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Introduction



The Issue with Household Surveys

* Personal income inequality is traditionally measured using household surveys

 Limitation: HH surveys often fail to accurately capture income in the upper tail
of the distribution, especially income derived from capital => The "missing rich"
problem

e Causes: sampling errors, coverage errors, unit and item nonresponse,
underreporting and preprocessing practices (e.g., top coding)

* Consequences: biased survey-based income distribution and inequality
indicators; levels and trends can be affected

» Beyond measuring inequality, inaccurate inference of determinants of inequality and the
relationship between inequality and, for instance, growth



Evidence the Rich are Missing in HH Surveys

* By inspection
* Comparison with external data (e.g., tax records)
* Nonparticipation Rates in Surveys

e Evidence from Linked Data
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Searching for Solutions

* Renewed interest in economic inequality led to a corresponding interest in
addressing the 'missing rich' problem (Atkinson and Piketty, 2007; Milanovic, 2023)

» The goal of the approaches is to generate inequality measures that are a more
accurate estimate of the actual (unobserved true) distribution of income

* Approaches proposed in the literature fall into three main strands:
1. Correcting household surveys (references shown later)
2. Relying on external data such as tax records (Atkinson and Piketty, 2010, 2011)

3. Distributional National Accounts (Zwijnenburg, 2019; Blanchet et al., 2024;
WID.World/PSE; DNA/OECD et al.)



Searching for Solutions

* Focus here is on approaches to correct HH surveys
* The goal of these approaches:

» Transform household survey so that corrected distribution is a

more accurate representation of actual (unobserved true)
distribution of income

»ldentified TWENTY-TWO distinct approaches that have been
applied in practice



The Issue With Correction Approaches
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The Issue With Correction Approaches

* In addition, evidence suggests that inequality indicators are highly sensitive to the
specific correction method

Applying different correction approaches to the same data can vyield
significantly different results for the same inequality indicator

Moreover, there is no consistent pattern in how different methods influence
inequality estimates

The impact of correction methods on inequality indicators varies depending on
how each method transforms the data



Gini Coefficient: Same Data, Different
Correction Approaches
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What’s To Be Done

 What criteria should be used to determine which methodological approach brings
us closer to the true inequality

o Unfortunately, there are no statistical tests or calibration mechanisms available
to make this determination

o In practice, researchers rely on assumptions, often made implicitly, and ad hoc
considerations to decide which approach to follow

o Broad guidelines to make decisions on the method and various aspects within
each method

o Nevertheless, it may not be possible to generate a single, definitive inequality
indicator



Correction Approaches



Towards a Taxonomy of Correction
Approaches

»Goal: transform household survey so that the corrected distribution is a more
accurate estimate of the actual (unobserved true) distribution of income

 Classify correction approaches: according to source of data and method (Hlasny
and Verme, 2018a; Lustig, 2019)

* Source of the data: within-survey or survey with external data (tax records, social
security registries, or National Accounts)

* Correction method: replacing, reweighting, and reweighting and replacing
* Within each one, there are a number of submethods

e Each approach/method/submethod has key underlying assumptions



Correcting Household Surveys: Approaches

* Replacing

* Original income observations at the top in survey are replaced with a
(presumably) more accurate estimate of the upper tail

* Original weights assigned to the top as a whole and to the rest of the distribution
remain intact

* Reweighting

* Adjusts the weights assigned to different income groups in the survey to (in
principle) better reflect the true representation of high-income individuals

* Original income observations remain intact
* Reweighting and replacing: modifies both the income observations and the weights

A variety of submethods: parametric and nonparametric replacing, model-based
reweighting, poststratification



Replacing vs. Reweighting: the Key Distinction

The main distinction between replacing and reweighting :

» Whether the population shares that define the top and the rest, the original weights
and the original incomes remain the same or change in the corrected distribution
* Inreplacing,

* The population share above the threshold that defines the upper tail that needs
correction remains the same

* The original weights remain intact except within the top in some methods
 The incomes above threshold change while remain intact at and below the
threshold; except in reweighting within the top

* In reweighting, the weights change, including the share of the upper tail, and
incomes remain intact

* When reweighting and replacing are combined, the original incomes and the weights
change
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Replacing o -
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REPLACING BY A PARAMETRIC DISTRIBUTION
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Reweighting

 Threshold

* No preselection
* Preselected

* Select data
* Survey
e Survey and tax records
e Survey and National Accts.

* Select method
e Within-survey
 Model Weight Adjustment
e Survey & external data
e Poststratification
* Increase weight at top;
downweigh uniformly the rest

REWEIGHTING

APPROACH
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Reweighting Top
Weighting Class Model Weight and Uniform
METHOD g- & ] & Poststratification .
Adjustment Adjustment Downweighting of
Rest
Assumes Common
Yes
Support
Weight of the
Upper Tail and the No
Rest Intact
Woeights within
Rest of Distribution No
Intact
Observations
(incomes) within Yes
Upper Tail Intact
Absolute Pove
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Indicators Intact




New weights based on, for ex, nonresponse adjustment
REWEIGHTING factor or poststratification weights (Little & Rubin, 2014;
Biemer & Christ, 2008)

Weights of
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* Replacing as a correction method can work if the presumption is
that the weights—except perhaps within the top-- in the original
uncorrected survey adequately represent the target population

* In other words, replacing assumes that undercoverage or unit or
item nonresponse or underreporting are within the upper tail

* If, however, there is evidence that, for example,
nonparticipation in survey rises with income, then replacing will
not fix this => reweighting



* Reweighting allows one to retain both the statistical integrity of the survey
design (with implications for statistical inference) and for micro-data files in
distributional analysis (Ravallion, 2022)

* With replacing, this is not possible in general except for some imputation
approaches

* However, in reweighting an important assumption is that the specific
sample drawn includes at least some rich respondents; that is, there
IS common support between survey and target population

 Since it affects the weights and not the incomes, reweighting as a correction
method can work properly under the assumption that there is common
support between the sample and the target population



Absence of Common Support

> In the absence of
common support,
correction must
use replacing
method and
possibly combine
survey with
external data such
as tax records or
National Accounts

tax records
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Twenty-two Approaches in Practice

* Replacing

o Semiparametric: within-survey and survey and external data (cowell and Flachaire, 2007;

Hlasny and Verme, 2021; Burkhauser et al., 2010; Alvaredo, 2011; Jenkins, 2017; Bourguignon, 2018; Hlasny, 2021)

o Nonparametric
= Within-survey Imputation (Hirsch and Schumacher, 2004; Bollinger and Hirsch, 2006)
= Survey and External Data
° Rescaling (Altimir, 1987; Bourguignon, 2018; Piketty, Yang and Zucman, 2019)
e Statistical Matching (Bach, Corneo, and Steiner, 2009)
* Replacing with Linked External Microdata (Flachaire et al., 2018; Bollinger et al. 2019)

* Reweighting within the Top (Medeiros et al., 2018)



Twenty-two Approaches in Practice

* Reweighting
o Within-survey

= Weighting Class Adjustment (Harris, 1977; Atkinson and Micklewright, 1983)

= Model Weight Adjustment (Mistiaen and Ravallion, 2003); Korinek et al., 2006; Hlasny and Verme,
2018a; 2018b; 2021)

o Survey and External Data
= Poststratification (Atkinson and Micklewright, 1983; Campos-Vazquez and Lustig, 2019)
= Reweighting with Exogenous Threshold (Bourguignon, 2018; Flachaire et al., 2023)

= Reweighting with Endogenous Threshold (Blanchet et al., 2022)



Twenty-two Approaches in Practice
* Reweighting and Replacing

o Within-survey

= Model Weight Adjustment Reweighting and Semiparametric Replacing (Hlasny and

Verme, 2018a; 2021)

o Survey and External Data
= Reweighting with Exogenous Threshold and Semiparametric Replacing (Anand and
Segal, 2015; Bourguignon, 2018)
= Reweighting with Endogenous Threshold and Rescaling (Blanchet et al., 2022)

= Nonparametric Replacing and Reweighting with Exogenous Threshold (Bourguignon,

2018; Burkhauser et al., 2018)



Twenty-two Approaches in Practice

REPLACING REWEIGHTING REWEIGHTING AND REPLACING (or vice versa)
APPROACH
Within-survey Survey and External Data Within-survey Survey and External Data Within-survey Survey and External Data
Semi i N i Reweighting Top w/Exogenous Nonparametric and Reweighting Top
emiparametric onparametric Threshold o . Reweighting Top | Reweighting Top w/ Exogenous Threshold
. I Reweighting Top Model Weight
METHOD Seml - Nonparametric Weighting Class | Model Weight Poststratificati JEnd Adiustment and w/Exogenous w/ Endogenous
emiparametric y - " . oststratification w/Endogenous ljustment an
Imputation Bt N Regression-based Ext T Reweighting Top Res‘callng Top Rescaling Top statistical Replacing Top with| Reweighting Top Adjustment Adjustment Ext " Threshold Semiparametric Thr.eshold anq Threshol.d and Ext " Ext "
er.na neome Prediction of ernatincome with External neomes Incomes w/Income atis !ca External Data in with External er.na neome Income Totals Semiparametric Rescaling er.na ncome ernatincome
Microdata Totals w/External Income Matching . Microdata Microdata Totals
Income Income Totals i Totals Full Income Microdata
Microdata
Cowell and
Flachaire (2007); Al do (2011) Mistiaen and
Burkhauser et al. Hirsch and B v;:e ° . l’ Van der Weid Bach, G d Harris (1977) Ravallion (2003); Atkinson and
(2012); Alfons et al. s :qrsc a: (:glzifrr € Z ) T ker EId e Lk " 8 X piketty, v ’ Altimir (1987), aSCt ! or?zegéga)n Bollinger et al, Medei cal AatLrls d’ Korinek et al. Micklewright Flachaire et al B . Blanchet et al. Wl v Atkinson (2007), Blanchet et al Burkh cal Boure
Applications (2013); Hlasny and (2054;2Z;.er d’L \(/jar_e ° | 4 hner. ah"_ il ne.r ?2:)16) cu(rzgoulliyon |Ze \ ?znslagr)‘ Bourguignon B e:qneBr k' (2019); Flachaire © (ezlgiss)e ab Wi LTson 'anht (2006; 2007), (1983), Campos- ad (;gze; ak ou(rzgf;illz)non (2022), Flachaire Tzsgz;rf 20;';16 Anand and Segal an;gz;' a ur (azl:]slegr)e al u(rzgoulliyon
Verme (2018a; " H" h Izn:;g Zaonls .OJ" c::o anc;)vll; na fanovie ueman (2018) :;t’ ) eznozzofs et al.(2023) ' 1;;/;@ Hlasny and Verme [Vazquez and Lustig et al. (2023) 3 (2015)
2018b; 2002), | "4 Hirseh (2008) | 12)0167'; e (2018) and Steiner (2016) (1983) (2018a; 2018b; (2019)
Burkhauser et al. 2021)
(2010)
s dH Survey and Survey and
s T J L:’r\./ey an t:use s d s d s d Survey and Nonresponse Rate | Survey, Census, | Survey, Taxand s d Nonresponse Rate s d
Type of Data Survey urv.ey, x ?n rIC?S (or other .urvey an .urvey an Survey and Tax .urvev an Survey and Tax Nonresponse Rate by Primary Tax and Social Social Security .urvey an Survey and Tax by Primary Survey and Tax ‘urvev an
Social Security variables that | National Accounts | National Accounts National Accounts . . . N National Accounts . . National Accounts
o by Gegraphic Area | Sampling Unit or Security Survey Sampling Unit or
predict incomes) . "
Geographic Area Geographic Area
Assumes Common No Yes No Yes No
Support
Weight of the
Upper Tail and the Yes No
Rest Intact
R M:EI\E?S:“;N!“ Y Ny No Ny No
est of Distribution es o hanical Uniform Di ing) ° (Mechanical Uniform D ighting)
Intact
Observations
(incomes) within No Yes No
Upper Tail Intact
Absolute Poverty Yes No
Indicators Intact
((S:ener:tte: Distribution Microdata Distribution Distribution Distribution Distribution Distribution Microdata** Microdata Microdata* Microdata Microdata Distribution Distribution Microdata** Microdata** Distribution
orrecte

Source: Table 3, Lustig and Vigorito (2025).
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Data Reconciliation: Surveys and Tax Data

The approaches that combine surveys with external sources require three types of
reconciliation:

* I[ncome concept:

e Reconciling the income variable in household surveys and the external source
entails using the same (or most similar) income concept: tax data includes taxable
income so in survey one needs to exclude informal income, for example

e Converting consumption into income in consumption-based surveys

* Unit of analysis:
* Households, individuals, adults, tax units? Typically, empirical exercises use the
population aged 15 or 20 and over because the tax data covers the adult
population only

* Income-sharing unit:
* Individuals or married couples (in the countries where there is joint tax filing)



Sensitivity of Results



*Sensitivity to threshold selection



Gini Coefficient: Same Data, Same Correction
Approaches, Different Thresholds

REWEIGHTI
REPLACING|REWEIGHTING| NG AND
REPLACING
Model
Uncorrected | Threshold Weight
Semipara Model Adj tg t
ustmen
. Weight J
metric _ and
Adjustment ]
Semiparam
etric
1% 0.491 0.5038 0.483
Hlasny&Verme (2021) US 2013 0.4725
5% 0.5792 0.5038 0.5226

» How to select the threshold? Cowell & Flachaire (2015); Jenkins
(2017)



*Sensitivity to correction approach



Share of total income (%)

95

85

75

65

55

Figure 2. Original and adjusted Lorenz curves (zoom on top)

u=25%; p_bar =90%; 6 = 1%

Gini:
Uncorrected .51
Corrected
Min .549
Max .60

o
-
-
-
-
o
-
-
—
-
-
-
-
-
o
-
-
-
—
-
e
—
-
=
-
—=
—
—
—

90 92 94

Poorest share of the population (%)

Source: Bourguignon (2018)

9%

98

o Original
......... g
----- L-2
----- L-3

L-4
— -5

— | -4/L-3

100

Mexico:
 Same data
e Survey and National Accts
* Different correction Approaches
e Rescaling
* Reweighting
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Gini Coefficient: Same Data, Different
Correction Approaches
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REPLACING REWEIGHTING REW EIGHTING AND REPLACING (or vice versa)
APPROACH
Within-survey Surveyand External Data Within-survey Surveyand External Data Within-survey Surveyand External Data
Semiparametric Nonparametric Reweighting Top w/Exogenous Nonparametricand Reweighting Top
Threshold RewelghtingTop Model Weight ReweightingTop | RewelghtingTop w/ Exogenous Threshold
METHOD Semiparametric Nonparametric Weighting Class hadel Welght Poststratification fE Adjustment and WiBoR s
Imputation Regression-based Rewsighting Top fescaling Top Rescaling Top ReplacingTop | RewsightingTop Adjustment Adjustment Threshald Samiparametric Threshold and Threshold and
Prediction of External Income with Esternal Incomes Incomes Statistical with Bxternal Data | with External External Income incomeTotals Semiparametric Rescaling Externalincome | Externallncome
Income Toteks Income Totals w/Btemlincome w/lncomeTotals Matching in Full Income Microdata Morodits Morodets Totels
Microdata
Cowell and Flachaire
{2007); Mistisan and
Burkhauser et al. Hirsch and Aharedo 2011}, Bach, Corneo, and Ravallion (2003); | Atkinson and
[2012); Alfons et Schumacher Burkhauser et al. | Van der Wede, Altimir (1987), | Steiner {2009], Bollinger et al, Harrks {1977], Korineket al. Micklewright Blanchet et al Atkinson (2007,
Applications al. (2013); Hlasny | (2004);Bollingsr [2012); Aharedo Lakner and Lakner and Bourguignon Piketty, Yangand Bourguignon Bach, Senozka | (2019); Fachaire Medeiros et al. Atkinson and (2006;2007), |(1983), campas- Flachaireet al. Bourguignon (2022), Flachaire Hlzsny and Verme Anand and Segal Blanchet et al. Burkhauser et al. Bourguignon
and Verme(2018a; and Hirsch and Londofio lanchovichina | Milanovic (2016) [2018) 2Zucman (2019} (2018) and Stelner et al[2023) [2018) Micklew right Hasnyand Verme |  Vazquerand {2023} {2018} etal. (2023) {20183 2022) (2015) {2022} [2018) {2018}
2018b;2021); (2006) (2013);1mins | (201%) [2016) (L9830 | apigga018n; | Lstigl2018)
Burkhausar at al. (2017) 2021)
{2010}
|
Survey and Surveyand
Surveyand House Survey and NonresponseRate Survey, Tatand NonresponseRate
Type of Data Survey Survey, Tat and Prices (or ather Survey and Surveyand Survey and Tax Surveyand Survey and Tax MonresponseRate by Primary Survey, Census, Tax Soclal Security Survey and Surveyand Tax by Primary Surveyand Tax Surveyand
Sochal Security variables that | Mational Accounts | National Accounts National Accounts and Social Security National Accounts National Accounts
by Gegraphic Area | Sampling Unit or Survey Sampling Unit or
predict incomes}) Geographic Area Geographic Area
Assumes Common Mo . Mo Ves Mo
Support
Weight of the
Upper Tall and the Yes No
Rest Intact
Weights within No No
Rest of e e [ Mechanical Uniform Downweighting) ho [ Mechanical Uniform Downweighting)
Distribution Intact
Observations
(incomes) within No Yes No
Upper Tall Intact
Absolute Poverty Yas Mo
Indicators Intact
Generates
Coracted Distribution Microdata Distribution Distribution Distribution Distribution Distribution Microdata** Microdata Microdata* Microdata Microdata Distribution Distribution Microdata** Microdata** Distribution
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Gini Coefficient: Same Data, Different Correction
Approaches, No Systematic Pattern
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Gini Coefficient: Same Data, Different Correction
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Same Data, Different Correction Approaches: Sensitivity of
Results

REPLACING REWEIGHTING REWEIGHTING AND REPLACING (or vice versa)
| Within-survey Survey and External Data Within-survey Survey and External Data Within-survey Survey and Extemnal Data
Externa
Author Country Year Uncorrected | Threshold ]
Data Semiparametric Nonparametric . Model Weight Endogenous Nonparametric
. i . X Model Weight Endogenous i
Semiparametric Semiparametric o R K K ) Exogenous Threshold Adjustment and Threshold and and Exogenous
Reweighting Top Rescaling Top Replacing Top with Adjustment Threshold ; ) ' reshold

with External Data Incomes External Data in Full Semiparametric Rescaling Thresho
Hlasny and Verme |EU (2011) none 38.23 1% - - - - 44 .31 - - 44 .31 - -
2013 1% 0.491 - - - - 0.5038 - - 0.483 - -

Hlasny&Verme (2021) |US none 0.4725

2013 5% 0.5792 - - - - 0.5038 - 0.5226 - -
Egypt (2009) none 35.56 1% - - - - 41.16 - - 41.15 - -

Bourguignon (2018) |Mexico 2009 Nat Acc 0.51 1% - - 0.599 0.6 - - 0.549 - - - 0.587
Flachaire et al. (2023) |Uruguay 2012 Tax 0.382 10%&72% - - 0.44 0.44 - 0.442 - - 0.435 -
Brazil Tax 0.582 0.581 0.692 - - - - - 0.646 - 0.691 -
Chile Tax 0.529 0.537 0.576 - - - - - 0.609 - 0.609 -
De Rosaetal (forth.) |co1ombia Tax 0.538 1% 0.523 0.627 - - - - - 0.652 - 0.639 -
Mexico Tax 0.567 0.545 0.681 - - - - - 0.638 - 0.684 -
Uruguay Tax 0.505 0.519 0.617 - - - - - 0.561 - 0.575 -

In grey highlight, corrected lower than uncorrected Gini
57

Source: Table 4, Lustig and Vigorito (2025).



Choosing Correction Approach(es)



Analytical Decision Tree

1) To reweight or not to reweight?

* If yes, model-based recalibration or poststratification?

2) To replace or not to replace?

* If yes, semiparametric or nonparametric?

3) To combine survey with external data or not to
combine?

* |f yes,
= Tax data or National Accounts?

= Semiparametric or nonparametric?



Analytical Decision Tree

1) To reweight or not to reweight?
» Check need with Korinek et al. test and/or the Groves test

* If answer is yes, recalibrate weights using (we recommend) Korinek,
Mistiaen and Ravallion (2006; 2007)

v’ Advantages: it keeps statistical integrity of survey; covariates;
statistical significance tests can be applied

v'Limitations: if support is not common (i.e., not a single rich
individual made it into the sample), correction will be limited

v’ Challenges: requires nonresponse rates by PSU; computationally
complex; perhaps hard to apply "bulk" for a time series for many
countries simultaneously



1) To reweight or not to reweight?

e Korinek et al test:

o Obtain the rate of unit nonresponse by Primary Sampling Unit (PSU) or the more
disaggregated geographic unit possible within the sampling frame.

o Calculate the average income for each geographic unit based on the observations in the
survey

o Plot or regress the rate of unit nonresponse against the average income

o If the plot is not a horizontal line, then unit nonresponse is not missing at random, and
reweighting is a necessary correction step to reduce bias

o Evidence of underrepresentation of the rich would be indicated if the plot is upward
sloping or U-shaped
* Groves test:

o Compare the respondent-based distribution of the variable of interest in the survey with
the distribution from another more accurate source (Groves, 2006, p. 655)
= Example: proportion of individuals above the income threshold corresponding to the top 1

percent in UK survey is very similar to proportion above that same income level in the tax
data (Burkhauser et al., 2018)
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2) To replace or not to replace?

» Check presence of typical upper tail issues : sparseness, data contamination,
high-leverage observations, underreporting, top coding, etc. (Cowell &
Flachaire, 2015)

* If answer is yes, apply within-survey semiparametric replacement methods
after recalibrating weights, if necessary (previous slide); examples:
Burkhauser et al. (2012); Hlasny and Verme (2018a, 2018b)

v'Advantages: can obtain corrected distribution for the same income
concept, unity of analysis, and income-sharing unit as in household
survey

v'Limitations:

= Of all semiparametric methods: loss of covariates (perhaps it can
be overcome)

= Within-survey estimates of parameters may yield limited
correction



3) To combine survey with external data or not to combine?
» Assess if support of survey and target population differ by inspection or other methods

* |f answer is yes, which data? what method?
o If there is reliable tax data, that could be first choice
o Method:

* Semiparametric: example, Jenkins (2017)

v Advantages: solid strategy in selecting the threshold, parametric model, and
estimation method of the parametric model; robustness checks and sensitivity
analysis

v’ Limitations:
= Of all semiparametric methods: loss of covariates

= Cannot obtain (in general) corrected distribution for the same income concept,
unity of analysis, and income-sharing unit as in household survey

* Nonparametric: examples, statistical matching (Bach et al. (2009) and with linked data,
“hybrid” distributions (Bollinger et al., 2019; Flachaire et al. 2023)

v Advantages:

= Can obtain corrected distribution for the same income concept, unity of analysis,
and income-sharing unit as in household survey

= Covariates can be preserved
v’ Limitations:

= Matching is based on observable variables while nonresponse and misreporting
may be influenced by unobservables

= Linked data may have linkage errors; which of the linked data reports the true
income?



3) To combine survey with external data or not to combine?
o If only National Accounts income totals are available, more reliable or want to use
them as control totals
o Method:
* Semiparametric and Nonparametric

o Example: Bourguignon (2018); obtains a range of corrected estimates
given that there is no way to determine which of the alternatives is closer
to the true distribution

v'Advantages:
" |f nonparametric, as all rescaling methods:

= Can obtain corrected distribution for the same
income concept, unity of analysis, and income-
sharing unit as in household survey

= Covariates can be preserved
v Limitations:

= Allocation of gap relies entirely on assumptions of how
that gap is distributed since you can only compare totals



Conclusions



Conclusions

* Household surveys often fail to accurately capture the incomes of the
richest individuals, leading to biased and imprecise inequality measures

* We identified 22 distinct correction approaches

* Inequality measures can vary significantly after correction, both in
levels and trends, with no consistent pattern across different correction
approaches

* Unfortunately, there are no statistical tests or general calibration
mechanisms to rank them

»\Warning against a mechanical application of methods



Conclusions

* Provided broad guidelines on approach selection process

» Given the limitations of all correction methods, systematic robustness
checks and reporting a range (or bands) of corrected inequality measures
rather than single point estimates

* For example:

 Comparing within-survey approaches with combined survey-external
data methods

* Analyzing sensitivity to:
* Threshold selection
* External data types
e Estimation methodologies



Conclusions

 The future:

" Methodological innovations for testing and calibrating
results

" Linked data
" Machine learning?
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