Heterogeneity in Macroeconomics
The Compositional Inequality Perspective

Marco Ranaldi1 Elisa Palagi2

1University College London
2Sant’Anna School of Advanced Studies

February 2023
Plan of the Presentation

1. Motivation
2. Framework
3. Database
4. Results
5. Implications
6. Conclusion
1 Motivation

2 Framework

3 Database

4 Results

5 Implications

6 Conclusion
Motivation

- Consider two types of heterogeneity
 - *Behavioral heterogeneity*: distribution of savings and consumption across the income distribution
 - *Endowment heterogeneity*: distribution of capital and labor incomes across the income distribution

- Macroeconomic models with heterogeneous agents adopt specific *behavioural* and *endowment heterogeneity* assumptions
 - *Kaldor (1955)*: capitalists save capital and workers consume labor income
 - *Kaplan et al. (2018)*: capitalists and workers earn from multiple sources but unclear association with their total income

- Which set of heterogeneity assumptions best describe modern economic systems?
Contribution

- This paper presents a framework to jointly study behavioral and endowment heterogeneity from an empirical perspective.

- We adopt the concept of *compositional inequality* to measure behavioural and endowment heterogeneity across more than 20 economies over the past 2 decades.

- Three main empirical results stand out:
 1. Heterogeneity matters and is country-specific.
 2. Negative relationship between heterogeneity (any type) and aggregate savings rate.
 3. Inverted U-shaped relationship between heterogeneity (in both dimensions) and growth.
Heterogeneity in macroeconomics: *empirical* studies
- Behavioral heterogeneity:
 - Dynan et al. (2004), Saez and Zucman (2016), Jappelli and Pistaferri (2014), Bunn et al. (2018), among others
- Endowment heterogeneity:
 - Berman and Milanovic (2020), Iacono and Ranaldi (2022), Ranaldi (2022), Ranaldi and Milanovic (2022), Iacono and Palagi (2022), among others

Heterogeneity in macroeconomics: *theoretical* studies
- Kaldorian models: Kaldor (1955), Pasinetti (1962)
- OLG models: Stiglitz (2015), Mattauch et al. (2022)
- ABM: Dosi et al. (2010), Botta et al. (2021), Palagi et al. (2021)
1 Motivation

2 Framework

3 Database

4 Results

5 Implications

6 Conclusion
Compositional Inequality

Illustration

- $1,000 per month
- $10,000 per month

- $10,000 K per month
- $0 W per month

- $0 K per month
- $1,000 W per month

- $0 K per month
- $10,000 W per month

- $1,000 K per month
- $0 W per month

- $20 K
- $80 W

- $800 K per month
- $200 W per month
Compositional Inequality

Definition

- Compositional inequality is the extent to which two income components are distributed unevenly across the income distribution (Ranaldi, 2022)

- Compositional inequality is
 - **Maximal** when the two components are separately distributed at the top and at the bottom of the income ladder (Societies I and II)
 - **Minimal** when each individual has the same relative shares of the two income components in her total income (Society III)
Compositional Inequality
Interpretations

1 Macroeconomic
 ▶ Compositional inequality *links* the functional and personal distributions of income
 ✤ If the rich earn all capital income in the economy an increase in the capital share increases the income of the rich

2 Varieties of Capitalism
 ▶ *Classical capitalism*: high compositional inequality of capital and labor → (Milanovic 2017)
 ▶ *New capitalism*: low compositional inequality of capital and labor → (Milanovic 2017, 2019)

3 Heterogeneity
 ▶ High (low) compositional inequality is associated to high (low) behavioral/endowment heterogeneity (across the income distribution)
To measure compositional inequality we use the income-factor concentration (IFC) index (Ranaldi, 2022)

The IFC index is constructed by means of three concentration curves (case of capital and labor):

1. **Zero-concentration curve** (≈ equality line for Gini)
 - describes the distribution whereby all individuals have the same composition of capital and labor income

2. **Actual-concentration curve** (≈ Lorenz curve for Gini)
 - describes the actual way capital income is distributed across the income distribution

3. **Maximum-concentration curve** (≈ axis x and y for Gini)
 - describes a distribution whereby the poorest earn labor income, and the richest earn capital income
Concentration Curves
Italy 1989

![Concentration Curve Diagram]

- Lorenz Curve
- Conc. Curve Capital
- Zero-Conc. Curve
- Max-Conc. Curve

Ranaldi and Palagi

Heterogeneity in Macroeconomic
If \mathcal{A} is the area between the zero- and the actual-concentration curve and \mathcal{B} the area between the zero- and the maximum-concentration curve the IFC index is defined as

$$I = \frac{\mathcal{A}}{\mathcal{B}}$$ (1)

The IFC ranges between 1 and -1

Denote I_{kl} and I_{sc} as the IFC for capital and labor and for savings and consumption, respectively

We define the **Heterogeneity Box** as the set of all possible combinations of the two indicators of compositional inequality
Heterogeneity Box

Rich and poor are identical in ownerships and behaviors

Rich save capital income & poor consume labor income
Motivation

Framework

Database

Results

Implications

Conclusion
Database
Structure

- **Structure**: average per capita labor income, capital income, savings, and consumption by percentile*, country and year ($2011 PPP-adjusted)

- **Data**: Luxembourg Income Study (LIS) Database

- **Years**: ≈ 1995 to 2018

- **Definitions**
 - *Capital income*: interest incomes + dividends + rental incomes
 - *Labor income*: wage income + self-employment income + pensions
 - *Consumption*: 12 categories of consumption
 - *Savings*: market income + transfer − consumption

- **Unit of Analysis**: Individual
Database Coverage

<table>
<thead>
<tr>
<th>Country</th>
<th>ISO3</th>
<th>N. Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>AUS</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>CHN</td>
<td>2</td>
</tr>
<tr>
<td>Estonia</td>
<td>EST</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>FRA</td>
<td>3</td>
</tr>
<tr>
<td>Georgia</td>
<td>GEO</td>
<td>2</td>
</tr>
<tr>
<td>Guatemala</td>
<td>GTM</td>
<td>3</td>
</tr>
<tr>
<td>Hungary</td>
<td>HUN</td>
<td>6</td>
</tr>
<tr>
<td>India</td>
<td>IND</td>
<td>2</td>
</tr>
<tr>
<td>Israel</td>
<td>ISR</td>
<td>8</td>
</tr>
<tr>
<td>Italy</td>
<td>ITA</td>
<td>8</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>CIV</td>
<td>1</td>
</tr>
<tr>
<td>Mexico</td>
<td>MEX</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>ISO3</th>
<th>N. Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palestine</td>
<td>PSE</td>
<td>1</td>
</tr>
<tr>
<td>Peru</td>
<td>PER</td>
<td>4</td>
</tr>
<tr>
<td>Poland</td>
<td>POL</td>
<td>4</td>
</tr>
<tr>
<td>Romania</td>
<td>ROU</td>
<td>2</td>
</tr>
<tr>
<td>Russia</td>
<td>RUS</td>
<td>3</td>
</tr>
<tr>
<td>Serbia</td>
<td>SRB</td>
<td>1</td>
</tr>
<tr>
<td>Slovenia</td>
<td>SVN</td>
<td>6</td>
</tr>
<tr>
<td>South Africa</td>
<td>ZAF</td>
<td>5</td>
</tr>
<tr>
<td>South Korea</td>
<td>KOR</td>
<td>4</td>
</tr>
<tr>
<td>Switzerland</td>
<td>CHE</td>
<td>3</td>
</tr>
<tr>
<td>Taiwan</td>
<td>TWN</td>
<td>8</td>
</tr>
<tr>
<td>Vietnam</td>
<td>VNM</td>
<td>2</td>
</tr>
</tbody>
</table>

Table: List of countries and years covered
Empirical Overview

- Positive values of both indicators of heterogeneity
- South Korea and China display, on average, low levels of behavioral and endowment heterogeneity
- Western countries like Italy, France, and Australia display moderate levels of heterogeneity in both dimensions
- Mexico and India display high levels of heterogeneity in both dimensions
Aggregate Savings Dynamics

- Following Ranaldi and Milanovic (2022) one can stylized the relationship between the aggregate saving rate \(s \) and behavioral heterogeneity \(\mathcal{I}_{sc} \) as follows

\[
s = \alpha - \frac{2B_{sc}}{G} \mathcal{I}_{sc} \tag{2}
\]

where \(\alpha = \frac{G_s R_s s}{G} \) is the share of saving inequality to inequality overall and \(G \) the Gini

- The savings rate and behavioral heterogeneity are negatively correlated
 - \(\uparrow \alpha \implies \uparrow s \): constant composition and higher saving inequality
 - \(\uparrow \beta \implies \downarrow s \): constant composition and lower size of top savers class
<table>
<thead>
<tr>
<th></th>
<th>(1) I_{sc}</th>
<th>(2) I_{sc}</th>
<th>(3) Macro saving</th>
<th>(4) Macro saving</th>
<th>(5) Macro saving</th>
<th>(6) Macro saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{sc}</td>
<td></td>
<td></td>
<td>-0.338***</td>
<td>-0.387***</td>
<td>-0.395***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-3.82)</td>
<td>(-5.32)</td>
<td>(-5.33)</td>
<td></td>
</tr>
<tr>
<td>Gini income</td>
<td>0.845**</td>
<td></td>
<td>0.903***</td>
<td>0.908***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.48)</td>
<td></td>
<td>(4.06)</td>
<td>(4.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per capita</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td>-0.000000739</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.10)</td>
<td></td>
<td></td>
<td></td>
<td>(-0.38)</td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>-0.000</td>
<td></td>
<td></td>
<td></td>
<td>-0.000253*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.24)</td>
<td></td>
<td></td>
<td></td>
<td>(-1.87)</td>
<td></td>
</tr>
<tr>
<td>I_{kl}</td>
<td>0.0162</td>
<td>-0.0028</td>
<td>-0.0587**</td>
<td>-0.0493</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(-0.03)</td>
<td>(-2.09)</td>
<td>(-1.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>country FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>year dummies</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>N</td>
<td>92</td>
<td>88</td>
<td>92</td>
<td>92</td>
<td>88</td>
<td>92</td>
</tr>
</tbody>
</table>

t statistics in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
<table>
<thead>
<tr>
<th>p.c. GDP growth</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{sc}</td>
<td>-1.874</td>
<td>11.79*</td>
<td>-1.523</td>
<td>11.74*</td>
<td>13.10**</td>
<td>11.23*</td>
<td>9.609</td>
</tr>
<tr>
<td></td>
<td>(-0.46)</td>
<td>(1.92)</td>
<td>(-0.36)</td>
<td>(1.90)</td>
<td>(2.32)</td>
<td>(1.77)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>I_{kl}</td>
<td>5.682**</td>
<td>19.96***</td>
<td>5.706**</td>
<td>20.10***</td>
<td>22.96***</td>
<td>21.02***</td>
<td>19.69***</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td>(4.26)</td>
<td>(2.24)</td>
<td>(4.51)</td>
<td>(4.97)</td>
<td>(4.66)</td>
<td>(4.31)</td>
</tr>
<tr>
<td>$I_{sc} \times I_{kl}$</td>
<td>-27.49***</td>
<td>-27.77***</td>
<td>-31.25***</td>
<td>-27.69***</td>
<td>-24.54***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-3.09)</td>
<td>(-3.32)</td>
<td>(-3.50)</td>
<td>(-3.10)</td>
<td>(-2.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.36)</td>
<td>(0.19)</td>
<td>(0.85)</td>
<td>(0.29)</td>
<td>(-0.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current account balance</td>
<td></td>
<td>-0.113*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td>0.00940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per capita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.000134</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-1.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>country FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>year dummies</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>N</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
</tbody>
</table>

t statistics in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Figure: Marginal effects of I_{kl} and I_{sc} on GDP growth, respectively.
Summary

- No aggregate relationship between behavioral and endowment heterogeneity
 - both types of heterogeneity should be considered independently in macro modelling

- Negative association between both behavioral and endowment heterogeneity and the aggregate saving rate
 - the more equal the composition of savings and consumption, or of capital and labor, the higher the overall savings (and investment) rate

- Positive association between income inequality and behavioral heterogeneity

- Inverted U-shaped relationship between growth and household heterogeneity
 - heterogeneity is first good than bad for growth
Implications

- Macroeconomic models with heterogeneous agents should account for all possible combinations of endowment and behavioral heterogeneity.

- Main limitations in macroeconomic models
 - Two-class models limit the extent of household heterogeneity (*Kaldorian, OLG, TANK*)
 - Fully heterogeneous models do not provide information on the association (copula) between composition and total income (*HANK, ABM*).

- How can we jointly model behavioral and endowment heterogeneity?

- How do specific initial conditions (in terms of behavioral and endowment heterogeneity) affect long-run macroeconomic dynamics?
Heterogeneity Box

Endowment Heterogeneity

Behavioral Heterogeneity
Motivation

Framework

Database

Results

Implications

Conclusion
Conclusion

- Framework to study household heterogeneity from an empirical perspective

- Compositional inequality is used to proxy two types of heterogeneity: \textit{behavioral} and \textit{endowment heterogeneity}

- Heterogeneity matters and is country-specific

- Behavioral and endowment heterogeneity are negatively associated to the aggregate saving rate

- Heterogeneity is harmful (beneficial) for growth above (below) certain thresholds

- We encourage macroeconomic models with heterogeneous agents to account for the full spectrum of both types of heterogeneity
Thanks!