Heterogeneity in Macroeconomics The Compositional Inequality Perspective

Marco Ranaldi¹ Elisa Palagi²

¹University College London

²Sant'Anna School of Advanced Studies

February 2023

Plan of the Presentation

1 Motivation

Motivation

- Consider two types of heterogeneity
 - ► *Behavioral heterogeneity*: distribution of savings and consumption across the income distribution
 - ► *Endowment heterogeneity*: distribution of capital and labor incomes across the income distribution
- Macroeconomic models with heterogeneous agents adopt specific behavioural and endowment heterogeneity assumptions
 - ► Kaldor (1955): capitalists save capital and workers consume labor income
 - ▶ Kaplan et al. (2018): capitalists and workers earn from multiple sources but unclear association with their total income
- Which set of heterogeneity assumptions best describe modern economic systems?

Contribution

- This paper presents a framework to jointly study behavioral and endowment heterogeneity from an empirical perspective
- We adopt the concept of *compositional inequality* to measure behavioural and endowment heterogeneity across more than 20 economies over the past 2 decades
- Three main empirical results stand out:
 - Interest and is country-specific
 - Negative relationship between heterogeneity (any type) and aggregate savings rate
 - Inverted U-shaped relationship between heterogeneity (in both dimensions) and growth

Literature

- Heterogeneity in macroeconomics: *empirical* studies
 - ▶ Behavioral heterogeneity:
 - ★ Dynan et al. (2004), Saez and Zucman (2016), Jappelli and Pistaferri (2014), Bunn et al. (2018)), among others
 - Endowment heterogeneity:
 - * Berman and Milanovic (2020), Iacono and Ranaldi (2022), Ranaldi (2022), Ranaldi and Milanovic (2022), Iacono and Palagi (2022), among others
- Heterogeneity in macroeconomics: theoretical studies
 - ▶ Kaldorian models: Kaldor (1955), Pasinetti (1962)
 - ► TANK & HANK models: Aiyagari (1994), Kaplan et al. (2018), Bilbiie (2020)
 - ▶ OLG models: Stiglitz (2015), Mattauch et al. (2022)
 - ▶ ABM: Dosi et al. (2010), Botta et al. (2021), Palagi et al. (2021)

2 Framework

3 Database

Compositional Inequality Illustration

Compositional Inequality Definition

- Compositional inequality is the extent to which two income components are distributed unevenly across the income distribution (Ranaldi, 2022)
- Compositional inequality is
 - ► Maximal when the two components are separately distributed at the top and at the bottom of the income ladder (Societies I and II)
 - ► Minimal when each individual has the same relative shares of the two income components in her total income (Society III)

Compositional Inequality Interpretations

Macroeconomic

- Compositional inequality *links* the functional and personal distributions of income
 - $\star\,$ If the rich earn all capital income in the economy an increase in the capital share increases the income of the rich

Varieties of Capitalism

- ▶ Classical capitalism: high compositional inequality of capital and labor \rightarrow (Milanovic 2017)
- ▶ New capitalism: low compositional inequality of capital and labor \rightarrow (Milanovic 2017, 2019)

Interogeneity

 High (low) compositional inequality is associated to high (low) behavioral/endowment heterogeneity (across the income distribution)

Measurement IFC Index

- To measure compositional inequality we use the income-factor concentration (IFC) index (Ranaldi, 2022)
- The IFC index is constructed by means of three concentration curves (case of *capital* and *labor*):
 - **(**) Zero-concentration curve (\approx equality line for Gini)
 - $\star\,$ describes the distribution whereby all individuals have the same composition of capital and labor income
 - \bigcirc Actual-concentration curve (\approx Lorenz curve for Gini)
 - $\star\,$ describes the actual way capital income is distributed across the income distribution
 - **(3)** Maximum-concentration curve ($\approx axis x$ and y for Gini)
 - $\star\,$ describes a distribution whereby the poorest earn labor income, and the richest earn capital income

Measurement IFC Index

• If \mathscr{A} is the area between the zero- and the actual-concentration curve and \mathscr{B} the area between the zero- and the maximum-concentration curve the IFC index is defined as

$$\mathscr{I} = \frac{\mathscr{A}}{\mathscr{B}} \tag{1}$$

- The IFC ranges between 1 and -1
- Denote \mathscr{I}_{kl} and \mathscr{I}_{sc} as the IFC for capital and labor and for savings and consumption, respectively
- We define the *Heterogeneity Box* as the set of all possible combinations of the two indicators of compositional inequality

Heterogeneity Box

Ranaldi and Palagi

Database Structure

- **Structure**: average per capita labor income, capital income, savings, and consumption by percentile*, country and year (\$2011 PPP-adjusted)
- Data: Luxembourg Income Study (LIS) Database
- Years: ≈ 1995 to 2018

• Definitions

- ► Capital income: interest incomes + dividends + rental incomes
- ► Labor income: wage income + self-employment income + pensions
- ► Consumption: 12 categories of consumption
- \blacktriangleright Savings: market income + transfer consumption

• Unit of Analysis: Individual

Database _{Coverage}

Country	ISO3	N. Years	Country	ISO3	N. Years	
Australia	AUS	2	Palestine	PSE	1	
China	CHN	2	Peru	PER	4	
Estonia	\mathbf{EST}	1	Poland	POL	4	
France	\mathbf{FRA}	3	Romania	ROU	2	
Georgia	GEO	2	Russia	RUS	3	
Guatemala	GTM	3	Serbia	SRB	1	
Hungary	HUN	6	Slovenia	SVN	6	
India	IND	2	South Africa	\mathbf{ZAF}	5	
Israel	ISR	8	South Korea	KOR	4	
Italy	ITA	8	Switzerland	CHE	3	
Ivory Coast	CIV	1	Taiwan	TWN	8	
Mexico	MEX	11	Vietnam	VNM	2	

Table: List of countries and years covered

Empirical Overview

- Positive values of both indicators of heterogeneity
- South Korea and China display, on average, low levels of behavioral and endowment heterogeneity
- Western countries like Italy, France, and Australia display moderate levels of heterogeneity in both dimensions
- Mexico and India display high levels of heterogeneity in both dimensions

Aggregate Savings Dynamics

• Following Ranaldi and Milanovic (2022) one can *stylized* the relationship between the aggregate saving rate (s) and behavioral heterogeneity (\mathscr{I}_{sc}) as follows

$$s = \alpha - \underbrace{\frac{2\mathscr{B}_{sc}}{\mathscr{G}_{\beta}}}_{\beta} \mathscr{I}_{sc} \tag{2}$$

where $\alpha = \frac{\mathscr{G}_s \mathscr{R}_s s}{\mathscr{G}}$ is the share of saving inequality to inequality overall and \mathscr{G} the Gini

- The savings rate and behavioral heterogeneity are negatively correlated
 - ▶ $\uparrow \alpha \implies \uparrow s$: constant composition and higher saving inequality
 - ▶ $\uparrow \beta \implies \downarrow s$: constant composition and lower size of top savers class

	(1)	(2)	(3)	(4)	(5)	(6)
	\mathcal{I}_{sc}	\mathcal{I}_{sc}	Macro saving	Macro saving	Macro saving	Macro saving
I_{sc}			-0.338***	-0.387***	-0.395***	
			(-3.82)	(-5.32)	(-5.33)	
Gini income		0.845^{**}		0.903^{***}	0.908^{***}	
		(2.48)		(4.06)	(4.02)	
GDP per capita		0.000			-0.000000739	
		(1.10)			(-0.38)	
Population		-0.000			-0.000253^{*}	
		(-0.24)			(-1.87)	
\mathcal{I}_{kl}	0.0162	-0.0028			-0.0587**	-0.0493
	(0.22)	(-0.03)			(-2.09)	(-1.21)
country FE	YES	YES	YES	YES	YES	YES
year dummies	YES	YES	YES	YES	YES	YES
Ν	92	88	92	92	88	92

 $t\ {\rm statistics}$ in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

p.c. GDP growth	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Isc	-1.874	11.79^{*}	-1.523	11.74^{*}	13.10^{**}	11.23^{*}	9.609
	(-0.46)	(1.92)	(-0.36)	(1.90)	(2.32)	(1.77)	(1.72)
\mathscr{I}_{kl}	5.682^{**}	19.96^{***}	5.706^{**}	20.10^{***}	22.96^{***}	21.02^{***}	19.69^{***}
	(2.22)	(4.26)	(2.24)	(4.51)	(4.97)	(4.66)	(4.31)
$\mathscr{I}_{sc} \times \mathscr{I}_{kl}$		-27.49^{***}		-27.77^{***}	-31.25^{***}	-27.69^{***}	-24.54^{***}
		(-3.09)		(-3.32)	(-3.50)	(-3.10)	(-2.96)
Gini income			-3.982	2.153	8.963	3.194	-3.620
			(-0.36)	(0.19)	(0.85)	(0.29)	(-0.41)
Current account balance					-0.113^{*}		
					(-1.78)		
Population						0.00940	
						(0.70)	
GDP per capita							-0.000134
							(-1.04)
country FE	YES	YES	YES	YES	YES	YES	YES
year dummies	YES	YES	YES	YES	YES	YES	YES
Ν	84	84	84	84	81	81	81

 $t\ {\rm statistics}$ in parentheses

* p < 0.10,** p < 0.05,*** p < 0.01

Figure: Marginal effects of \mathscr{I}_{kl} and \mathscr{I}_{sc} on GDP growth, respectively.

Summary

- No aggregate relationship between behavioral and endowment heterogeneity
 - $\blacktriangleright \longrightarrow$ both types of heterogeneity should be considered independently in macro modelling
- Negative association between both behavioral and endowment heterogeneity and the aggregate saving rate
 - ▶ \longrightarrow the more equal the composition of savings and consumption, or of capital and labor, the higher the overall savings (and investment) rate
- Positive association between income inequality and behavioral heterogeneity
- Inverted U-shaped relationship between growth and household heterogeneity
 - \blacktriangleright \longrightarrow heterogeneity is first good than bad for growth

Implications

- Macroeconomic models with heterogeneous agents should account for all possible combinations of endowment and behavioral heterogeneity
- Main limitations in macroeconomic models
 - ► Two-class models limit the extent of household heterogeneity (*Kaldorian, OLG, TANK*)
 - ▶ Fully heterogeneous models do not provide information on the association (copula) between composition and total income (HANK, ABM)
- How can we jointly model behavioral and endowment heterogeneity?
- How do specific initial conditions (in terms of behavioral and endowment heterogeneity) affect long-run macroeconomic dynamics?

Heterogeneity Box

Conclusion

- Framework to study household heterogeneity from an empirical perspective
- Compositional inequality is used to proxy two types of heterogeneity: *behavioral* and *endowment heterogeneity*
- Heterogeneity matters and is country-specific
- Behavioral and endowment heterogeneity are negatively associated to the aggregate saving rate
- Heterogeneity is harmful (beneficial) for growth above (below) certain thresholds
- We encourage macroeconomic models with heterogeneous agents to account for the full spectrum of both types of heterogeneity

Thanks!