Rising longevity and US wealth inequality

some empirical evidence

Krzysztof Makarski [FAME|GRAPE & Warsaw School of Economics]
Joanna Tyrowicz [FAME|GRAPE, University of Warsaw & IZA]
Marcin Lewandowski [FAME|GRAPE & University of Warsaw]

Income and Wealth inequality: Drivers and consequences
Gdańsk 2023
Motivation
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially

Up 5+ years: 14.1 years (1950) → 19.5 years (2015)
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially

Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially

Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: Longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially

Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
\textbf{Up 5+ years:} 14.1 years (1950) \rightarrow 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement

2. **STRUCTURAL:**
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement

2. **STRUCTURAL:**
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. BEHAVIORAL:
 ↑ incentives for old-age saving
 ↑ widening gap between young and around-retirement

2. STRUCTURAL:
 ↑ cohorts close to retirement relatively more numerous
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially
Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: Longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement

2. **STRUCTURAL:**
 - ↑ cohorts close to retirement relatively more numerous

Question: does longevity matter quantitatively for wealth inequality?
Rising longevity and wealth inequality in the US

Life expectancy at retirement ↑ substantially

Up 5+ years: 14.1 years (1950) → 19.5 years (2015)

Theory: longevity affects accumulation patterns

1. **BEHAVIORAL:**
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement

2. **STRUCTURAL:**
 - ↑ cohorts close to retirement relatively more numerous

Question: does longevity matter quantitatively for wealth inequality?
→ We study wealth inequality patterns across birth cohorts (SCF data)
Two dimensions of inequality: same year of birth (=cohort) vs same year
Two dimensions of inequality: same year of birth (=cohort) vs same year
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

- Between-cohort component adds to overall inequality
- 1950-1970: inequality would have ↓ more except for between-cohort
Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

- Between-cohort component adds to overall inequality
- 1950-1970: inequality would have ↓ more except for between-cohort
- 1975-2020: inequality would have ↑ less except for between-cohort
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort

- We link this contribution to increases in LE65
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort

- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
Rising longevity and US wealth inequality

Motivation

Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort

- We link this contribution to increases in LE65
 - **Behavioural only**: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - **Total**: Structural component overtakes – high LE → diminished increases
Motivation

Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort

- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - Total: Structural component overtakes – high LE → diminished increases

- We identify which cohorts contribute the most to wealth inequality
Our contribution

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have ↓ more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort

- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - Total: Structural component overtakes – high LE → diminished increases

- We identify which cohorts contribute the most to wealth inequality
 - Longer-lived birth cohorts contribute the most to inequality
Data & methods
Data source

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)
Data source

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- **Assets** - Financial assets (including defined-contribution retirement plans), real estate, cars
- **Liabilities** - Personal debt and housing debt
Data source

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- **Assets** - Financial assets (including defined-contribution retirement plans), real estate, cars
- **Liabilities** - Personal debt and housing debt
- **Our measure** - **Net wealth**
Data source

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- **Assets** - Financial assets (including defined-contribution retirement plans), real estate, cars
- **Liabilities** - Personal debt and housing debt
- **Our measure** - Net wealth

Demographic characteristics match Current Population Survey and U.S. Census data
Methods – what we do

1. **Inequality Decomposition** – Quantify significance of between cohorts inequality
Methods – what we do

1. **Inequality Decomposition** – Quantify significance of between cohorts inequality
2. **LE65 vs \(GE_{between} \)** – Connect changes in between cohort inequality to changes in longevity
Methods – what we do

1. **Inequality Decomposition** – Quantify significance of between cohorts inequality
2. **LE65 vs $GE_{between}$** – Connect changes in between cohort inequality to changes in longevity
3. **RIF Regression** – We identify which cohorts contribute the most to wealth inequality
Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?
Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

\[
Total = \text{Inequality Between Cohorts} + \text{Inequality Within Cohorts}
\]

(1)
Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

\[\text{Total} = \text{Inequality Between Cohorts} + \text{Inequality Within Cohorts} \] (1)

Gini can’t do this!
Q: Significance and evolution of between cohort inequality?

\[\text{Total} = \text{Inequality Between Cohorts} + \text{Inequality Within Cohorts} \] (1)

Gini can’t do this!

\[\text{Generalized Entropy} = GE_{\text{between}} + GE_{\text{within}} \] (2)
Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

\[\text{Total} = \text{Inequality Between Cohorts} + \text{Inequality Within Cohorts} \]

(1)

Gini can’t do this!

\[\text{Generalized Entropy} = GE_{between} + GE_{within} \]

(2)

\[\Delta GE = \Delta GE_{between} + \Delta GE_{within} \]

(3)
Methods – Generalized entropy

\[
GE(\alpha) = \frac{1}{N\alpha(\alpha - 1)} \sum_{i=1}^{N} \left[\left(\frac{a_i}{\bar{y}} \right)^{\alpha} - 1 \right],
\]

- \(a_i \) - assets of individual \(i \)
- \(\bar{y} \) - arithmetic mean of assets
- \(N \) - population size
Methods – Generalized entropy

\[GE(\alpha) = \frac{1}{N\alpha(\alpha - 1)} \sum_{i=1}^{N} \left[\left(\frac{a_i}{\bar{y}} \right)^\alpha - 1 \right] \],

- \(a_i \) - assets of individual \(i \)
- \(\bar{y} \) - arithmetic mean of assets
- \(N \) - population size
Alpha comparison

The graph shows the Gini coefficient over time from 1950 to 2010. The Gini coefficient measures income inequality within a country. The values range from 0 to 1, with 0 indicating perfect equality and 1 indicating perfect inequality. The line chart indicates a trend of increasing inequality from the 1950s to the 2000s, with a notable dip in the 1970s.
Alpha comparison

- Gini coefficient, left axis
- GE(\(\alpha = 0.3\)), right axis
Alpha comparison

- Gini coefficient, left axis
- $GE(\alpha=1.5)$, right axis

Gini coefficient graph showing data from 1950 to 2010.
Alpha comparison
Methods – Generalized entropy:

\[GE = GE_{between} + GE_{within} \] (5)
Methods – Generalized entropy:

\[GE = GE_{between} + GE_{within} \] \hspace{1cm} (5)

Between Cohorts component of GE
Methods – Generalized entropy:

\[GE = GE_{between} + GE_{within} \] (5)

Between Cohorts component of GE

\[GE_{between}(\alpha) = \frac{1}{\alpha(\alpha - 1)} \left[\sum_{c=1}^{C} n_c \left(\frac{\bar{y}_c}{\bar{y}} \right)^\alpha - 1 \right] \] (6)

- \(\bar{y}_c \) - arithmetic mean of assets of cohort \(c \)
- \(\bar{y} \) - arithmetic mean of assets
- \(n_c \) - population share of cohort \(c \)
Methods – Generalized entropy:

\[GE = GE_{between} + GE_{within} \]

Between Cohorts component of GE

\[
GE_{between}(\alpha) = \frac{1}{\alpha(\alpha - 1)} \left[\sum_{c=1}^{C} n_c \left(\frac{\bar{y}_c}{\bar{y}} \right)^\alpha - 1 \right]
\]

- \(\bar{y}_c \) - arithmetic mean of assets of cohort \(c \)
- \(\bar{y} \) - arithmetic mean of assets
- \(n_c \) - population share of cohort \(c \)
Methods – Generalized entropy:

\[GE = GE_{between} + GE_{within} \]

Between Cohorts component of GE

\[GE_{between}(\alpha) = \frac{1}{\alpha(\alpha - 1)} \left[\sum_{c=1}^{C} n_c \left(\frac{\bar{y}_c}{\bar{y}} \right)^\alpha - 1 \right] \]

- \(\bar{y}_c \) - arithmetic mean of assets of cohort \(c \)
- \(\bar{y} \) - arithmetic mean of assets
- \(n_c \) - population share of cohort \(c \)
Rising longevity and US wealth inequality

Results

<table>
<thead>
<tr>
<th>Period over which change in GE inequality was computed</th>
<th>BETWEEN cohort contribution to change of GE</th>
<th>WITHIN cohort contribution to change of GE</th>
<th>overall change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950/4–1970/4</td>
<td>−.3</td>
<td>−.2</td>
<td>−.1</td>
</tr>
<tr>
<td>1955/9–1975/9</td>
<td>−.2</td>
<td>−.1</td>
<td>0</td>
</tr>
<tr>
<td>1960/4–1960/4</td>
<td>−.1</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>1965/9–1985/9</td>
<td>0</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>1970/4–1990/4</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>1975/9–1995/9</td>
<td>.2</td>
<td>.3</td>
<td>.5</td>
</tr>
<tr>
<td>1980/4–2000/4</td>
<td>.3</td>
<td>.5</td>
<td>.8</td>
</tr>
<tr>
<td>1985/9–2005/9</td>
<td>.5</td>
<td>.8</td>
<td>1</td>
</tr>
<tr>
<td>1990/4–2010/4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Results

Generalized entropy ($\alpha=0.5$) BETWEEN cohort inequality levels

Generalized entropy ($\alpha=0.5$) WITHIN cohort inequality levels

Rising longevity and US wealth inequality
Results

<table>
<thead>
<tr>
<th>Period over which change in GE inequality was computed</th>
<th>Change in GE inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950/4–1970/4</td>
<td>−0.3</td>
</tr>
<tr>
<td>1955/9–1975/9</td>
<td>−0.25</td>
</tr>
<tr>
<td>1960/4–1960/4</td>
<td>−0.2</td>
</tr>
<tr>
<td>1965/9–1985/9</td>
<td>−0.15</td>
</tr>
<tr>
<td>1970/4–1990/4</td>
<td>−0.1</td>
</tr>
<tr>
<td>1975/9–1995/9</td>
<td>−0.05</td>
</tr>
<tr>
<td>1980/4–2000/4</td>
<td>0</td>
</tr>
<tr>
<td>1985/9–2005/9</td>
<td>0.05</td>
</tr>
<tr>
<td>1990/4–2010/4</td>
<td>0.1</td>
</tr>
<tr>
<td>1995/9–2015/6</td>
<td>0.15</td>
</tr>
</tbody>
</table>

- Contribution of BETWEEN cohort GE
- Contribution of WITHIN cohort GE
- Overall change
Results

Between cohorts inequality vs LE65 changes

Note: Population structure fixed at 1950 level
Between cohorts inequality vs LE65 changes

Note: Population structure fixed at 1950 level

Note: Population structure fixed at 1950 level; between cohort inequality smoothed
Between cohorts inequality vs LE65 changes

Note: Population structure fixed at 1950 level
Between cohorts inequality vs LE65 changes

Note: Population structure fixed at 1950 level

Note: Population structure as in the data
Total inequality vs LE65 changes

![Graph showing the relationship between total inequality and changes in life expectancy at 65. The graph includes a fitted line and 95% confidence interval, with data points indicated.]
Identifying the role of specific birth-cohorts
Identifying the role of specific birth-cohorts

Q: Do cohorts with ↑ LE65 contribute ↑ to overall inequality?
Identifying the role of specific birth-cohorts

Q: Do cohorts with ↑ LE65 contribute ↑ to overall inequality?

Pieces needed to answer:

\[\text{Wealth}_i = \beta_{c \text{ birth cohort}} + \epsilon_i \]
Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Pieces needed to answer:

\[\text{Wealth}_i = \beta_\text{birth cohort}_c + \epsilon_i \]

\[\text{Wealth}_i = \beta_\text{birth cohort}_c + \beta_\text{year} y + \beta_\text{age} a + \epsilon_i \]
Identifying the role of specific birth-cohorts

Q: Do cohorts with ↑ LE65 contribute ↑ to overall inequality?

Pieces needed to answer:

\[Wealth_i = \beta_c \text{birth cohort}_c + \epsilon_i \]

\[Wealth_i = \beta_c \text{birth cohort}_c + \beta_y \text{year}_y + \beta_a \text{age}_a + \epsilon_i \]

We need tricks:

- Deaton and Paxson (1994) decomposition
Identifying the role of specific birth-cohorts

Q: Do cohorts with ↑ LE65 contribute ↑ to overall inequality?

Pieces needed to answer:

\[Wealth_i = \beta_c \text{birth cohort}_c + \epsilon_i \]

\[Wealth_i = \beta_c \text{birth cohort}_c + \beta_y \text{year}_y + \beta_a \text{age}_a + \epsilon_i \]

We need tricks:

- Deaton and Paxson (1994) decomposition
- Recentered Influence Functions (Firpo et al. (2009) & Rios-Avila (2020))
Final regression form

$$RIF\{wealth_i, GE(\alpha)\} = \beta_c birth\ cohort_c + \beta_a age_a + \beta_y year_y + \epsilon_i$$ (7)
Final regression form

\[RIF\{wealth_i, GE(\alpha)\} = \beta_c \text{birth cohort}_c + \beta_a \text{age}_a + \beta_y \text{year}_y + \epsilon_i \] (7)

\[GE(\alpha) = \mathbb{E}[RIF\{wealth_i, GE(\alpha)\}] \] (8)
Final regression form

\[
RIF\{wealth_i, GE(\alpha)\} = \beta_c \text{birth cohort}_c + \beta_a \text{age}_a + \beta_y \text{year}_y + \epsilon_i
\] \hspace{1cm} (7)

\[
GE(\alpha) = \mathbb{E}[RIF\{wealth_i, GE(\alpha)\}]
\] \hspace{1cm} (8)

\(\beta_c\) – unconditional partial effect of cohort on distributional statistics (GE/GINI)
Evolution of β_c across cohorts
Identifying the role of specific birth-cohorts

Rising longevity and US wealth inequality

Change in life expectancy at age=65, relative to cohort born in 1920–1924

GE: Cohort effects relative to cohort born 1920–24 (adjusting for age and year effects)

GE: CI (left axis) GE: point estimate of effect size (left axis)
Relevance
Demography and life-cycle matters

- Structural models misspecification – \textit{infinitely lived agents}

e.g., Hubmer et al. (2021), Fagereng et al. (2019)
Demography and life-cycle matters

- Structural models misspecification – *infinitely lived agents*

e.g., Hubmer et al. (2021), Fagereng et al. (2019)

1. Increases in income inequality

e.g., Saez and Zucman (2020)
Demography and life-cycle matters

- Structural models misspecification – infinitely lived agents
 e.g., Hubmer et al. (2021), Fagereng et al. (2019)
 1 Increases in income inequality
 e.g., Saez and Zucman (2020)
 2 Reduction in redistributive taxes
 e.g., Hubmer et al. (2021)
Demography and life-cycle matters

- Structural models misspecification – **infinitely lived agents**

 e.g., Hubmer et al. (2021), Fagereng et al. (2019)

 1. Increases in income inequality
 e.g., Saez and Zucman (2020)
 2. Reduction in redistributive taxes
 e.g., Hubmer et al. (2021)

- Possible policy misspecification
Conclusion & Discussion

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
Conclusion & Discussion

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
- We link this contribution to increases in LE65
Conclusion & Discussion

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
- We link this contribution to increases in LE65
- Cohorts with ↑ LE65 contribute ↑ to overall increases of wealth inequality
Questions or suggestions?
Thank you!

w: grape.org.pl

f: grape.org

e: m.lewandowski@grape.org.pl
Appendix
Ratio comparison

DATA: GE CI
DATA: GE point estimate of effect size
POPULATION STRUCTURE FROM 1950: GE CI
POPULATION STRUCTURE FROM 1950: GE point estimate of effect size

Change in life expectancy at age=65, relative to cohort born in 1920–1924

GE05: cohort effects relative to cohort born 1920–24 (adjusting for age and year effects)
Ratio comparison

- Graph showing the ratio comparison of between cohort inequality of new cohorts vs. old cohorts.
- The x-axis represents the ratio of between inequity of new cohorts to between inequity of old cohorts.
- The y-axis shows the 95% CI fitted values.
- The data points are plotted as triangles, indicating changes in between cohort inequality.

Legend:
- 95% CI
- Fitted values
- Change in between cohort inequality
Rising longevity and US wealth inequality

Appendix

<table>
<thead>
<tr>
<th>Period</th>
<th>Overall Change</th>
<th>BETWEEN Cohort Contribution</th>
<th>WITHIN Cohort Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950/4−1970/4</td>
<td>−.3</td>
<td>−.2</td>
<td>−.1</td>
</tr>
<tr>
<td>1955/9−1975/9</td>
<td>−.2</td>
<td>−.1</td>
<td>0</td>
</tr>
<tr>
<td>1960/4−1960/4</td>
<td>−.1</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>1965/9−1985/9</td>
<td>0</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>1970/4−1990/4</td>
<td>.1</td>
<td>.2</td>
<td>.3</td>
</tr>
<tr>
<td>1975/9−1995/9</td>
<td>.2</td>
<td>.3</td>
<td>.4</td>
</tr>
<tr>
<td>1980/4−2000/4</td>
<td>.3</td>
<td>.4</td>
<td>.5</td>
</tr>
<tr>
<td>1985/9−2005/9</td>
<td>.4</td>
<td>.5</td>
<td>.6</td>
</tr>
<tr>
<td>1990/4−2010/4</td>
<td>.5</td>
<td>.6</td>
<td>.7</td>
</tr>
</tbody>
</table>

Note: Population structure frozen at 1950
GE within

\[GE_{within}(\alpha) = \sum_{c=1}^{C} \left(\frac{N_c}{N} \right)^{1-\alpha} s_c^\alpha GE_c(\alpha) \] (9)
Intuition

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
<td>1945</td>
<td>1950</td>
</tr>
<tr>
<td>65</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
<td>1945</td>
</tr>
<tr>
<td>70</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
</tr>
<tr>
<td>75</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
</tr>
<tr>
<td>80</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
</tr>
<tr>
<td>85</td>
<td>1865</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
</tr>
<tr>
<td>90</td>
<td>1860</td>
<td>1865</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
</tr>
</tbody>
</table>
Intuition

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
<td>1945</td>
<td>1950</td>
</tr>
<tr>
<td>65</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
<td>1945</td>
</tr>
<tr>
<td>70</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
<td>1940</td>
</tr>
<tr>
<td>75</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
<td>1935</td>
</tr>
<tr>
<td>80</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
<td>1930</td>
</tr>
<tr>
<td>85</td>
<td>1865</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
<td>1925</td>
</tr>
<tr>
<td>90</td>
<td>1860</td>
<td>1865</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1915</td>
<td>1920</td>
</tr>
</tbody>
</table>
Intuition

![Graph showing trends in GE(α=0.5) and wealth share held by top 10%.](image)
Intuition
Intuition

<table>
<thead>
<tr>
<th>Age:</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
<th>Period 5</th>
<th>Period 6</th>
<th>Period 7</th>
<th>Period 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
<td>Cohort 10</td>
<td>Cohort 11</td>
<td>Cohort 12</td>
<td>Cohort 13</td>
<td>Cohort 14</td>
</tr>
<tr>
<td>30</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
<td>Cohort 10</td>
<td>Cohort 11</td>
<td>Cohort 12</td>
<td>Cohort 13</td>
</tr>
<tr>
<td>40</td>
<td>Cohort 5</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
<td>Cohort 10</td>
<td>Cohort 11</td>
<td>Cohort 12</td>
</tr>
<tr>
<td>50</td>
<td>Cohort 4</td>
<td>Cohort 5</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
<td>Cohort 10</td>
<td>Cohort 11</td>
</tr>
<tr>
<td>60</td>
<td>Cohort 3</td>
<td>Cohort 4</td>
<td>Cohort 5</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
<td>Cohort 10</td>
</tr>
<tr>
<td>70</td>
<td>Cohort 2</td>
<td>Cohort 3</td>
<td>Cohort 4</td>
<td>Cohort 5</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
<td>Cohort 9</td>
</tr>
<tr>
<td>80</td>
<td>Cohort 1</td>
<td>Cohort 2</td>
<td>Cohort 3</td>
<td>Cohort 4</td>
<td>Cohort 5</td>
<td>Cohort 6</td>
<td>Cohort 7</td>
<td>Cohort 8</td>
</tr>
</tbody>
</table>
Bibliography

