Rising longevity and US wealth inequality some empirical evidence

Krzysztof Makarski [FAME|GRAPE & Warsaw School of Economics] Joanna Tyrowicz [FAME|GRAPE, University of Warsaw & IZA] Marcin Lewandowski [FAME|GRAPE & University of Warsaw]

Income and Wealth inequality: Drivers and consequences Gdańsk 2023

Motivation

Life expectancy at retirement \uparrow substantially

Life expectancy at retirement \uparrow substantially **Up 5+ years:** 14.1 years (1950) \rightarrow 19.5 years (2015)


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```



```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

Theory: longevity affects accumulation patterns

BEHAVIORAL:

 \uparrow incentives for old-age saving


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

Theory: longevity affects accumulation patterns

BEHAVIORAL:

 \uparrow incentives for old-age saving


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

Theory: longevity affects accumulation patterns

1 BEHAVIORAL:

- ↑ incentives for old-age saving
- ↑ widening gap between young and around-retirement


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

- **1** BEHAVIORAL:
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement
- 2 STRUCTURAL:


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

- **1** BEHAVIORAL:
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement
- 2 STRUCTURAL:


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

- **1** BEHAVIORAL:
 - ↑ incentives for old-age saving
 - \uparrow widening gap between young and around-retirement
- 2 STRUCTURAL:
 - ↑ cohorts close to retirement relatively more numerous


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

Theory: longevity affects accumulation patterns

- **1** BEHAVIORAL:
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement
- 2 STRUCTURAL:
 - ↑ cohorts close to retirement relatively more numerous

Question: does longevity matter quantitatively for wealth inequality?


```
Life expectancy at retirement \uparrow substantially
Up 5+ years: 14.1 years (1950) \rightarrow 19.5 years (2015)
```

Theory: longevity affects accumulation patterns

- **1** BEHAVIORAL:
 - ↑ incentives for old-age saving
 - ↑ widening gap between young and around-retirement
- 2 STRUCTURAL:
 - ↑ cohorts close to retirement relatively more numerous

Question: does longevity matter quantitatively for wealth inequality? \rightarrow We study wealth inequality patterns across birth cohorts (SCF data)

Two dimensions of inequality: same year of birth (=cohort) vs same year

Two dimensions of inequality: same year of birth (=cohort) vs same year

Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

Between-cohort component adds to overall inequality

.....

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort

Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

- Between-cohort component adds to overall inequality
- 1950-1970: inequality would have \downarrow more except for between-cohort
- 1975-2020: inequality would have ↑ less except for between-cohort

Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

- Between-cohort component adds to overall inequality
- 1950-1970: inequality would have \downarrow more except for between-cohort
- 1975-2020: inequality would have ↑ less except for between-cohort

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
- We link this contribution to increases in LE65

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - \blacksquare Total: Structural component overtakes high LE \rightarrow diminished increases

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - \blacksquare Total: Structural component overtakes high LE \rightarrow diminished increases
- We identify which cohorts contribute the most to wealth inequality

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
 - Between-cohort component adds to overall inequality
 - 1950-1970: inequality would have \downarrow more except for between-cohort
 - 1975-2020: inequality would have ↑ less except for between-cohort
- We link this contribution to increases in LE65
 - Behavioural only: Periods with ↑ LE65 gains undergo ↑ between-cohort inequality increases
 - \blacksquare Total: Structural component overtakes high LE \rightarrow diminished increases
- We identify which cohorts contribute the most to wealth inequality
 - Longer-lived birth cohorts contribute the most to inequality

Data & methods

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- Assets Financial assets (including defined-contribution retirement plans), real estate, cars
- Liabilities Personal debt and hosusing debt

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- Assets Financial assets (including defined-contribution retirement plans), real estate, cars
- Liabilities Personal debt and hosusing debt
- Our measure Net wealth

Survey of Consumer Finances (SCF+) data for 1950-2020 by Kuhn et al. (2020)

- Assets Financial assets (including defined-contribution retirement plans), real estate, cars
- Liabilities Personal debt and hosusing debt
- Our measure Net wealth

Demographic characteristics match Current Population Survey and U.S. Census data

■ Inequality Decomposition – Quantify significance of between cohorts inequality

Inequality Decomposition – Quantify significance of between cohorts inequality
 LE65 vs *GE*_{between} – Connect changes in between cohort inequality to changes in longevity

Inequality Decomposition – Quantify significance of between cohorts inequality
 LE65 vs *GE_{between}* – Connect changes in between cohort inequality to changes in longevity
 RIF Regression – We identify which cohorts contribute the most to wealth inequality

Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

Total = Inequality Between Cohorts + Inequality Within Cohorts(1)

Methods – Generalized entropy:

Q: Significance and evolution of between cohort inequality?

Total = Inequality Between Cohorts + Inequality Within Cohorts

Gini can't do this!

(1)
Q: Significance and evolution of between cohort inequality?

Total = Inequality Between Cohorts + Inequality Within Cohorts(1)

Gini can't do this!

 $Generalized \ Entropy = GE_{between} + GE_{within} \tag{2}$

Q: Significance and evolution of between cohort inequality?

Total = Inequality Between Cohorts + Inequality Within Cohorts(1)

Gini can't do this!

$$Generalized \ Entropy = GE_{between} + GE_{within} \tag{2}$$

$$\Delta GE = \Delta GE_{between} + \Delta GE_{within} \tag{3}$$

$${\it GE}(lpha) = rac{1}{{\it N}lpha(lpha-1)}\sum_{i=1}^{N}\left[\left(rac{{\it a}_{i}}{ar{y}}
ight)^{lpha}-1
ight],$$

- a_i assets of individual i
- \bar{y} arithmetic mean of assets
- N population size

(4)

$${\it GE}(oldsymbol{lpha}) = rac{1}{Nlpha(lpha-1)}\sum_{i=1}^N \left[\left(rac{a_i}{ar y}
ight)^{oldsymbol{lpha}} -1
ight],$$

- a_i assets of individual i
- \bar{y} arithmetic mean of assets
- N population size

$$GE = GE_{between} + GE_{within} \tag{5}$$

$$GE = GE_{between} + GE_{within} \tag{5}$$

$$GE = GE_{between} + GE_{within} \tag{5}$$

$$GE_{between}(\alpha) = \frac{1}{\alpha(\alpha - 1)} \left[\sum_{c=1}^{C} n_c \left(\frac{\bar{y_c}}{\bar{y}} \right)^{\alpha} - 1 \right]$$
(6)

- $\bar{y_c}$ arithmetic mean of assets of cohort c
- \bar{y} arithmetic mean of assets
- **n**_c population share of cohort c

$$GE = GE_{between} + GE_{within}$$

$$\textit{GE}_{between}(\alpha) = rac{1}{lpha(lpha-1)} \left[\sum_{c=1}^{C} n_c \left(rac{ar{y_c}}{ar{y}}
ight)^{lpha} - 1
ight]$$

- $\bar{y_c}$ arithmetic mean of assets of cohort c
- \bar{y} arithmetic mean of assets
- **n**_c population share of cohort c

$$GE = GE_{between} + GE_{within}$$

$$\textit{GE}_{\textit{between}}(\alpha) = \frac{1}{\alpha(\alpha-1)} \left[\sum_{c=1}^{C} \frac{n_c}{\sqrt{p}} \left(\frac{\bar{y_c}}{\bar{y}} \right)^{\alpha} - 1 \right]$$

- $\bar{y_c}$ arithmetic mean of assets of cohort c
- \bar{y} arithmetic mean of assets
- **n**_c population share of cohort c

Results

G R

Total inequality vs LE65 changes

Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Pieces needed to answer:

Wealth_i = β_c birth cohort_c + ϵ_i

Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Pieces needed to answer:

Wealth_i = β_c birth cohort_c + ϵ_i

Wealth_i =
$$\beta_c$$
 birth cohort_c + β_y year_y + β_a age_a + ϵ_i

Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Pieces needed to answer:

Wealth_i = β_c birth cohort_c + ϵ_i

Wealth_i =
$$\beta_c$$
 birth cohort_c + β_y year_y + β_a age_a + ϵ_i

We need tricks:

Deaton and Paxson (1994) decomposition

Identifying the role of specific birth-cohorts

Q: Do cohorts with \uparrow LE65 contribute \uparrow to overall inequality?

Pieces needed to answer:

Wealth_i = β_c birth cohort_c + ϵ_i

Wealth_i =
$$\beta_c$$
 birth cohort_c + β_y year_y + β_a age_a + ϵ_i

We need tricks:

- Deaton and Paxson (1994) decomposition
- Recentered Influence Functions (Firpo et al. (2009) & Rios-Avila (2020))

Final regression form

$$RIF\{wealth_i, GE(\alpha)\} = \frac{\beta_c}{birth} \ cohort_c + \beta_a age_a + \beta_y year_y + \epsilon_i$$
(7)

Final regression form

$$RIF\{wealth_i, GE(\alpha)\} = \beta_c birth \ cohort_c + \beta_a age_a + \beta_y year_y + \epsilon_i$$
(7)

$$GE(\alpha) = \mathbb{E}[RIF\{wealth_i, GE(\alpha)\}]$$
(8)

Final regression form

$$RIF\{wealth_i, GE(\alpha)\} = \beta_c birth \ cohort_c + \beta_a age_a + \beta_y year_y + \epsilon_i$$
(7)

$$GE(\alpha) = \mathbb{E}[RIF\{wealth_i, GE(\alpha)\}]$$
(8)

 β_c – unconditional partial effect of cohort on distributional statistics (GE/GINI)

Evolution of β_c across cohorts

GRAPE

Relevance

Relevance

Demography and life-cycle matters

Structural models misspecification – infinitely lived agents

e.g., Hubmer et al. (2021), Fagereng et al. (2019)

Demography and life-cycle matters

Structural models misspecification – infinitely lived agents

e.g., Hubmer et al. (2021), Fagereng et al. (2019)

I Increases in income inequality e.g., Saez and Zucman (2020)

Demography and life-cycle matters

Structural models misspecification – infinitely lived agents

e.g., Hubmer et al. (2021), Fagereng et al. (2019)

 Increases in income inequality e.g., Saez and Zucman (2020)
 Reduction in redistributive taxes e.g., Hubmer et al. (2021)

Structural models misspecification – infinitely lived agents

e.g., Hubmer et al. (2021), Fagereng et al. (2019)

 Increases in income inequality e.g., Saez and Zucman (2020)
 Reduction in redistributive taxes e.g., Hubmer et al. (2021)

Possible policy misspecification

• Contribution of between-cohort inequality to overall rise in wealth inequality is significant!

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
- We link this contribution to increases in LE65

- Contribution of between-cohort inequality to overall rise in wealth inequality is significant!
- We link this contribution to increases in LE65
- Cohorts with \uparrow LE65 contribute \uparrow to overall increases of wealth inequality

Questions or suggestions? Thank you!

- w: grape.org.pl
- t: grape_org
- f: grape.org
- e: m.lewandowski@grape.org.pl

- Appendix

Appendix

Ratio comparison

🐺 Ц К

Ratio comparison

GE within

$$GE_{within}(\alpha) = \sum_{c=1}^{C} \left(\frac{N_c}{N}\right)^{1-\alpha} s_c^{\alpha} GE_c(\alpha)$$
(9)

age/year	y_1950	y_1955	y_1960	y_1965	y_1970	y_1975	y_1980	y_1985	y_1990	y_1995	y_2000	y_2005	y_2010
20	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985	1990
25	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985
30	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980
35	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975
40	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970
45	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965
50	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960
55	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955
60	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950
65	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945
70	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940
75	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935
80	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930
85	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925
90	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920

age/year	y_1950	y_1955	y_1960	y_1965	y_1970	y_1975	y_1980	y_1985	y_1990	y_1995	y_2000	y_2005	y_2010
20	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985	1990
25	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980	1985
30	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	1980
35	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975
40	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965	1970
45	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960	1965
50	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955	1960
55	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950	1955
60	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945	1950
65	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940	1945
70	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935	1940
75	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930	1935
80	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925	1930
85	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920	1925
90	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915	1920

Age:	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6	Period 7	Period 8
20	Cohort 7	Cohort 8	Cohort 9	Cohort 10	Cohort 11	Cohort 12	Cohort 13	Cohort 14
30	Cohort 6	Cohort 7	Cohort 8	Cohort 9	Cohort 10	Cohort 11	Cohort 12	Cohort 13
40	Cohort 5	Cohort 6	Cohort 7	Cohort 8	Cohort 9	Cohort 10	Cohort 11	Cohort 12
50	Cohort 4	Cohort 5	Cohort 6	Cohort 7	Cohort 8	Cohort 9	Cohort 10	Cohort 11
60	Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7	Cohort 8	Cohort 9	Cohort 10
70	Cohort 2	Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7	Cohort 8	Cohort 9
80	Cohort 1	Cohort 2	Cohort 3	Cohort 4	Cohort 5	Cohort 6	Cohort 7	Cohort 8

Bibliography

Bibliography

- Deaton, A. S. and Paxson, C.: 1994, Saving, growth, and aging in taiwan, *Studies in the Economics of Aging*, University of Chicago Press, pp. 331–362.
- Fagereng, A., Holm, M. B., Moll, B. and Natvik, G.: 2019, Saving behavior across the wealth distribution: The importance of capital gains, *NBER Working Paper 26588*, National Bureau of Economic Research.
- Firpo, S., Fortin, N. M. and Lemieux, T.: 2009, Unconditional quantile regressions, *Econometrica* **77**(3), 953–973.
- Hubmer, J., Krusell, P. and Smith Jr, A. A.: 2021, Sources of US wealth inequality: Past, present, and future, Vol. 35, pp. 391–455.
- Kuhn, M., Schularick, M. and Steins, U. I.: 2020, Income and wealth inequality in America, 1949–2016, *Journal of Political Economy* **128**(9), 3469–3519.
- Rios-Avila, F.: 2020, Recentered influence functions (rifs) in stata: Rif regression and rif decomposition, *The Stata Journal* **20**(1), 51–94.
- Saez, E. and Zucman, G.: 2020, The rise of income and wealth inequality in America: evidence from distributional macroeconomic accounts, *Journal of Economic Perspectives* **34**(4), 3–26.

