

Is the Gini Coefficient Enough? A Microeconomic Data Decomposition Study

Ivan Skliarov, PhD student

Inequality literature

- 1. Correlation between income inequality and education, health, economic growth;
- 2. As a control variable;

3. Inequality decomposition studies: gender, age, race, regions, income sources.

Human development index

Summary measure of average achievement in key dimensions of human development:

- 1. Healthy life;
- 2. Knowledge;
- 3. Decent standard of living.

Source: hdr.undp.org

Human development index

A **composite index** measuring average achievement in key dimensions of human development:

- 1. Life expectancy at birth;
- 2. Mean years of schooling;
- 3. Expected years of schooling;
- 4. GNI per capita.

Source: hdr.undp.org

Human development index

Mean years of schooling – average N of years of education received by people ages 25 and older.

Expected years of schooling – N of years of schooling that a child can expect to receive.

Source: hdr.undp.org

Methodology

- 5 dependent variables:
 - Human Development Index;
 - Life expectancy;
 - Mean years of schooling;
 - Expected years of schooling;
 - GDP p.c.
- 2 indexes: Thiel or squared coefficient of variation
- 2 sets of control variables: Castells-Quintana et al. (2018) and Amate-Fortes et al. (2017).
- 2 estimators: OLS with PCSE and GLS.

Income data

- Disposable household income;
- Top and bottom-coded;
- Equivalized;
- Time period: 2006-2017;
- 18 countries: Austria, Belgium, Canada, Colombia, France, Germany, Ireland, Israel, Luxembourg, Peru, Poland, Spain, Switzerland, the UK, the US, Uruguay, Georgia, Lithuania.

Inequality indexes composition

Theil Index

$$Theil = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{\mu} \ln\left(\frac{y_i}{\mu_{\mu}}\right)$$

Decomposition:

$$Theil = \sum_{k=1}^{K} \frac{n_k}{n} \frac{\mu_k}{\mu} \left[\frac{1}{n_k} \sum_{i=1}^{n_k} \frac{y_{i,k}}{\mu_k} \ln\left(\frac{y_{i,k}}{\mu_k}\right) \right] + \sum_{k=1}^{K} \frac{n_k}{n} \frac{\mu_k}{\mu} \ln\left(\frac{\mu_k}{\mu_k}\right)$$

Theil Index

Decomposition:

Theil Index

Decomposition:

Individual contributions of k-th cohort members

to within-cohort inequality

Weight

Contributions of *k*-th cohort to between-cohort inequality

Squared coefficient of variation

$$SCV = \frac{\sigma^2}{2\mu^2}$$

Decomposition:

$$SCV = \sum_{k=1}^{K} \frac{n_k}{n} \left(\frac{\mu_k}{\mu}\right)^2 \frac{\sigma_k^2}{2\mu_k^2} + \frac{1}{2} \sum_{k=1}^{K} \frac{n_k}{n} \left[\left(\frac{\mu_k}{\mu}\right)^2 - 1 \right].$$

Squared coefficient of variation

Decomposition:

Weight

Contribution of *k*-th cohort to between-cohort inequality

Comparison of between-cohort indexes

Comparison of within-cohort indexes

List of control variables

Model A – Castells-Quintana et al. (2018) Model B – Amate-Fortes et al. (2017)

Description	Models	Source
Inflation, GDP deflator (annual %)	Α	WDI
Gross capital formation (% of GDP)	Α	WDI
Sum of imports and exports of goods and services (% of GDP)	Α	WDI
Urban population (% of total population)	Α	WDI
General government final consumption expenditure (% of GDP)	A, B	UNCTAD
Population growth (annual %)	B	WDI
Unemployment, total (% of total labor force)	B	WDI
Control of Corruption: Estimate	B	WGI
Political Stability and Absence of Violence/Terrorism: Estimate	B	WGI

Source: Own

Within and between-cohort inequality

Source: Own

HDI Ranking

Source: Own

HDI Ranking

Source: Own

Dynamic of HDI and its components, 2006-2017

Income inequality ranking, Theil index

Source: Own

Correlation of inequality components with HDI

Correlation of inequality components with HDI

Estimation results, Theil index, OLS with PCSE

	Model A						Model B				
<i>x</i>	hdi	le	mys	eys	$gnipc^1$		hdi	le	mys	eys	$gnipc^1$
W_t	-13.9***	-5.1***	- 2.6*	-1.4	20.6		- 11.4***	-2.2	-3.5***	-0.6	30.6
W_{t-1}	-10.3***	-3.2*	1.2	-4.2**	- 69.6**		-8.9***	-3.0*	0.9	- 4.1**	-39.6*
W_{t-2}	-4.9	-3.4	-0.1	-1.6	23.8		-4.6	-2.6	0.3	-1.4	-9.0
B_t	16.8	8.8	-1.6	-21.6	195.1		-1.9	17.1	0.4	-32.1**	213.9*
B_{t-1}	38.0	38.6**	3.4	-33.8**	44.7		9.3	39.3***	10.0	- 46.8 ^{***}	-0.9
B_{t-2}	27.1	22.3	4.5	-23.2*	234.1*		-5.9	6.0	10.0	-29.4**	-123.3
d	✓	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
g	\checkmark	\checkmark	\checkmark	\checkmark	~		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ν	18	18	18	18	18		18	18	18	18	18
Т	12	12	12	12	12		12	12	12	12	12

Coefficients for intercept, control, and indicator variables are omitted.

Statistical significance: *** p < 0.01, ** p < 0.05, * p < 0.1.

¹ Coefficients measured in thousands.

Source: Own calculation using LIS data.

Comparison of regression results obtained using OLS with PCSE

Ŷ			Theil			SCV					
λ	hdi	le	mys	eys	gnipc	hdi	le	mys	eys	gnipc	
147	-A	-A	-a			-A	-A	-a			
<i>vv</i> _t	-B		-B			-B		-B			
147	-A	-a		-A	-A	-A	-A		-A	-A	
VV_{t-1}	-B	-b		-B	-b	-B			-B		
W_{t-2}											
										+a	
B _t				-B	+b				-B	+b	
		+A		-A			+A		-A		
B_{t-1}		+B		-B			+B		-B		
				-a	+a				-a		
B_{t-2}				-B					-B		

Statistical significance: capital letter means p < 0.05, small letter means p < 0.1. Source: Own calculation using LIS data.

Comparison of regression results obtained using the GLS estimator

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Theil						SCV		
$\lambda$	hdi	le	mys	eys	gnipc		hdi	le	mys	eys	gnipc
147	-A	-A					-A	-A		-a	-a
VV _t	-B		-B			_	-B		-B		
147	-A	-A		-A			-A	-A		-A	
$vv_{t-1}$	-B	-b		-B		_	-B			-B	
147						-					
$W_{t-2}$							-b	-b		-b	
D				-A						-A	
$B_t$				-B	+b					-B	+B
D	+A	+A		-A	+A	-	+a	+A		-A	+A
$B_{t-1}$		+B	+B	-B				+b	+b	-B	
 	+A				+A	-	+A				+a
$D_{t-2}$			+B						+B		-b

Statistical significance: capital letter means p < 0.05, small letter means p < 0.1. Source: Own calculation using LIS data.

#### Extensions

- More countries;
- More inequality dimensions.

ineq.2d: Two-Dimensional Decomposition of the Theil Index and the Squared Coefficient of Variation

https://cran.r-project.org/web/packages/ineq.2d/index.html

Theil index - Giammatteo, M. (2007)

Squared coefficient of variation - Garcia-Penalosa, C., & Orgiazzi, E. (2013)

# Ineq.2d

theil. 2d(us16, "hitotal", "cohort", c("hilabour", "hicapital", "hitransfer"), "hpopwgt")

Source	f25t49.W	f50t74.W	f75.W	t24.W	f25t49.B	f50t74.B	f75.B	t24.B
hilabour	0.14081	0.16409	0.00268	0.02948	0.0401	0.01272	-0.00516	-0.00498
hicapital	0.00684	0.02248	0.00188	-0.00009	0.00118	0.00174	-0.0022	-0.00002
hitransfer	-0.01202	-0.01897	0.00564	-0.00139	0.00258	0.00422	-0.0291	-0.00069

The rest of R and STATA code is publicly available: <u>https://doi.org/10.6084/m9.figshare.c.6665180.v1</u>

#### References

Amate-Fortes, I., Guarnido-Rueda, A., & Molina-Morales, A. (2017). Economic and Social Determinants of Human Development: A New Perspective. Social Indicators Research, 133(2), 561-577.

Castells-Quintana, D., Royuela, V., & Thiel, F. (2019). Inequality and Sustainable Development: Insights from an Analysis of the Human Development Index. Sustainable Development, 27(3), 448-460.

Garcia-Penalosa, C., and Orgiazzi, E. (2013). Factor Components of Inequality: A Cross-Country Study. Review of Income and Wealth, 59(4), 689-727.

Giammatteo, M. (2007). The Bidimensional Decomposition of Inequality: A nested Theil Approach. LIS Working papers, Article 466, 1-30.

Mookherjee, D., & Shorrocks, A. (1982). A Decomposition Analysis of the Trend in UK Income Inequality. The Economic Journal, 92(368), 886-902.

# Thank you!