Diverging Cost of Living **Causes and Consequences**

Balázs Zélity

Wesleyan University

September 2023

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

 → September 2023

< 47 ▶

Section 1

Introduction

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

э

2/30

イロト イヨト イヨト イヨト

• Since 2008: very low interest rates in developed economies

э

・ロト ・四ト ・ヨト ・ヨト

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation
- However, some goods enjoyed high price growth: housing, health

3 × 4 3 ×

Image: A matrix

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation
- However, some goods enjoyed high price growth: housing, health
- Was inflation low for everyone? Or were some groups more exposed to high-growth items?

A B M A B M

• Construct group-specific CPIs for 2000-2019 in the US

э

イロト イヨト イヨト

- Construct group-specific CPIs for 2000-2019 in the US
- Propose alternative housing cost measure to conventional owners' equivalent rent (OER)

イロト イポト イヨト イヨト

- Construct group-specific CPIs for 2000-2019 in the US
- Propose alternative housing cost measure to conventional owners' equivalent rent (OER)
- Investigate the role monetary policy plays in cost-of-living divergence

3 × < 3 ×

• Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)

3 × < 3 ×

- Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
- This paper makes three contributions:

ヨト・イヨト

- Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
- This paper makes three contributions:
 - Construct an alternative housing cost measure

- Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
- This paper makes three contributions:
 - Construct an alternative housing cost measure
 - Identify ultimate drivers (literature mostly focused on divergence along the income distribution)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
- This paper makes three contributions:
 - Construct an alternative housing cost measure
 - Identify ultimate drivers (literature mostly focused on divergence along the income distribution)
 - Onsider monetary policy as a driver

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Consumer Price Indices from Bureau of Labour Statistics (BLS)

э

6/30

イロト イヨト イヨト イヨト

- Consumer Price Indices from Bureau of Labour Statistics (BLS)
- Household-level expenditure data from the Consumer Expenditure Survey (BLS)

< □ > < □ > < □ > < □ > < □ > < □ >

- Consumer Price Indices from Bureau of Labour Statistics (BLS)
- Household-level expenditure data from the Consumer Expenditure Survey (BLS)
- Monetary policy shocks: Kuttner (2001)

A B b A B b

Outline of Presentation

- Q Group-specific CPIs
- Oltimate Drivers
- 4 The Role of Monetary Policy

Section 2

Group-specific CPIs

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

э

8/30

・ロト ・四ト ・ヨト ・ヨト

Table: Illustration of group-specific CPI calculations

ltem	Item CPI	Weight (both)	Weight (A)	Weight (B)
Food at home	105	0.5	0.4	0.6
Electricity	110	0.2	0.3	0.1
Footwear	97	0.3	0.3	0.3
Group-specific CPI	-	103.6	104.1	103.1

- ∢ ⊒ →

Variable vs. fixed weights

э

Image: A matrix

Variable vs. fixed weights

• Variable weights: more accurate at tracking true cost of living

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

 BLS measure of owners' cost: owners' equivalent rent (OER)

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

- BLS measure of owners' cost: owners' equivalent rent (OER)
- Good to measure price of "consumption goods"

10 / 30

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

- BLS measure of owners' cost: owners' equivalent rent (OER)
- Good to measure price of "consumption goods"
- Bad to measure cost of living, because it just tracks rents

10/30

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

- BLS measure of owners' cost: owners' equivalent rent (OER)
- Good to measure price of "consumption goods"
- Bad to measure cost of living, because it just tracks rents
- Issue: rent and own costs can decouple considerably

10/30

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

- BLS measure of owners' cost: owners' equivalent rent (OER)
- Good to measure price of "consumption goods"
- Bad to measure cost of living, because it just tracks rents
- Issue: rent and own costs can decouple considerably
- Mortgage-based housing cost measure: principal + interest + maintenance + property taxes

• Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:

∃ ► < ∃ ►</p>

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$

< □ > < □ > < □ > < □ > < □ > < □ >

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$

< □ > < □ > < □ > < □ > < □ > < □ >

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$

- 4 回 ト 4 三 ト 4 三 ト

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$

• Own-to-rent cost:
$$\frac{c_t^n}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)}$$

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$
 - Own-to-rent cost: $\frac{c_t^H}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)}$
- Implications:

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$
 - Own-to-rent cost: $\frac{c_t^H}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)}$
- Implications:
 - Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$
 - Own-to-rent cost: $\frac{c_t^H}{c^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+\sigma)}$
- Implications:
 - Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
 - ▶ E.g. $\frac{\partial c_t^H / c_t^R}{\partial \sigma} < 0$ implies higher housing price growth makes owning relatively cheaper

11/30

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:
 - Housing price: $p_t = (1+g)p_{t-1}$
 - Cost of renting: $c_t^R = \kappa p_t$
 - Cost of ownership: $c_t^H = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$
 - Own-to-rent cost: $\frac{c_t^H}{c^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+\sigma)}$

Implications:

- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- ▶ E.g. $\frac{\partial c_t^H / c_t^R}{\partial \sigma} < 0$ implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates \rightarrow high housing price growth \rightarrow lower $c_t^H/c_t^R \rightarrow$ lower inflation for owners

2000-2005 and 2015-2017: co-movement

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

э

12/30

イロト イヨト イヨト イヨト

- 2000-2005 and 2015-2017: co-movement
- 2005-2007: own cost relatively worse

э

A B A A B A

< 47 ▶

- 2000-2005 and 2015-2017: co-movement
- 2005-2007: own cost relatively worse
- 2008-2015: rent cost relatively worse

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

12/30

< 行

CPI by Age Group

September 2023

<ロト < 四ト < 三ト < 三ト

2

Divergence Drivers by Age Group

Contributors to inflation by age group, 2010-2020 (variable weights)

September 2023

イロト イヨト イヨト イヨト

CPI by Income Group

Balázs Zélity (Wesleyan University)

September 2023

・ロト ・四ト ・ヨト ・ヨト

Divergence Drivers by Income Group

Contributors to inflation by income percentile, 2010-2020 (variable weights)

Balázs Zélity (Wesleyan University)

September 2023

イロト イヨト イヨト イヨト

CPI by Renter/Owner Status

CPI by housing status since 2000 (variable weights, mortgage)

Balázs Zélity ((Wesleyan	University)	
-----------------	-----------	-------------	--

September 2023

イロト イヨト イヨト イヨト

Divergence Drivers by Renter/Owner Status

Contributors to inflation by housing status, 2010-2020 (variable weights)

Balázs Zélity ((Wesleyan	University)	
-----------------	-----------	-------------	--

September 2023

イロト イポト イヨト イヨト

Section 3

Ultimate Drivers

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

э

19/30

イロト イヨト イヨト イヨト

• Existing studies focusing on divergence by income, but why is this divergence happening?

э

A B F A B F

Image: A matrix

- Existing studies focusing on divergence by income, but why is this divergence happening?
- Construct age/income/renter categories, e.g. young/rich/owners vs. old/rich/owners to isolate effect of each factor

A B M A B M

CPI by Age/Income/Housing

CPI by age/income/rent since 2000 (variable weights, mortgage)

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

イロト イポト イヨト イヨト

Divergence Drivers by A/I/H

Contributors to inflation by household status, 2000-2020 (variable weights)

September 2023

イロト イポト イヨト イヨト

• Cost-of-living divergence is significant along age/income/housing lines

3

イロト イヨト イヨト

- Cost-of-living divergence is significant along age/income/housing lines
- The divergence is primarily driven by housing and health expenditures

< □ > < □ > < □ > < □ > < □ > < □ >

- Cost-of-living divergence is significant along age/income/housing lines
- The divergence is primarily driven by housing and health expenditures
- Turns out the key factors are:
 - Renters/owner gap increased due to housing costs

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Cost-of-living divergence is significant along age/income/housing lines
- The divergence is primarily driven by housing and health expenditures
- Turns out the key factors are:
 - Renters/owner gap increased due to housing costs
 - Age gap increased due to health costs

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Cost-of-living divergence is significant along age/income/housing lines
- The divergence is primarily driven by housing and health expenditures
- Turns out the key factors are:
 - Renters/owner gap increased due to housing costs
 - Age gap increased due to health costs
- Income mostly matters only through its correlation with housing/age

イロト イヨト イヨト ・

Section 4

The Role of Monetary Policy

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

э

24 / 30

イロト イヨト イヨト イヨト

• Does monetary policy cause inflation divergence?

э

イロン 不聞 とくほとう ほとう

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - $CPI_{t,i}$ is CPI of group *i* (e.g. renters are *i*, owners are *j*),

3

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - ► CPI_{t,i} is CPI of group i (e.g. renters are i, owners are j),
 - $MonShock_{t-k}$ is a monetary policy shock k months prior.

イロト 不得 トイヨト イヨト

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - ► CPI_{t,i} is CPI of group i (e.g. renters are i, owners are j),
 - $MonShock_{t-k}$ is a monetary policy shock k months prior.
- The cumulative sums of the β_k give the IRF

25 / 30

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - ► CPI_{t,i} is CPI of group i (e.g. renters are i, owners are j),
 - $MonShock_{t-k}$ is a monetary policy shock k months prior.
- The cumulative sums of the β_k give the IRF
 - β₀: effect of shock on impact

25 / 30

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - ► CPI_{t,i} is CPI of group i (e.g. renters are i, owners are j),
 - $MonShock_{t-k}$ is a monetary policy shock k months prior.
- The cumulative sums of the β_k give the IRF
 - β_0 : effect of shock on impact
 - $\beta_0 + \beta_1$: cumulative effect one month after impact

イロト イヨト イヨト ・

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

- where
 - ► CPI_{t,i} is CPI of group i (e.g. renters are i, owners are j),
 - $MonShock_{t-k}$ is a monetary policy shock k months prior.
- The cumulative sums of the β_k give the IRF
 - β_0 : effect of shock on impact
 - $\beta_0 + \beta_1$: cumulative effect one month after impact
 - ▶ $\beta_0 + \beta_1 + \beta_2$: cumulative effect two months after impact, etc.

Renter/Owner Divergence

Renters vs. owners (mortgage, variable weights)

September 2023

Age Group Divergence

55-64 vs. 25-34-year-olds (mortgage, variable weights)

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

< ⊒ > September 2023

< 1 k

э

∃ →

Income Group Divergence

21-40th vs. 81-100th income (mortgage, variable weights)

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

< 47 ▶

3.5 3

Section 5

Conclusion

Balázs Zélity (Wesleyan University)

Diverging Cost of Living

September 2023

3

29 / 30

<ロト <問ト < 目ト < 目ト

• Up to 0.6 p.p. annual inflation rate difference between groups

イロト イポト イヨト イヨト

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status

э

ヨト・イヨト

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health

A B A A B A

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:
 - ► Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)

3

30 / 30

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:
 - ► Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)
 - ▶ Health: lack of competition, other issues (Case and Deaton, 2020)

3