Diverging Cost of Living
Causes and Consequences

Balázs Zélity
Wesleyan University
September 2023
Section 1

Introduction
Since 2008: very low interest rates in developed economies
Motivation

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation
Motivation

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation
- However, some goods enjoyed high price growth: housing, health
Motivation

- Since 2008: very low interest rates in developed economies
- But this coincided with low inflation
- However, some goods enjoyed high price growth: housing, health
- Was inflation low for everyone? Or were some groups more exposed to high-growth items?
Construct group-specific CPIs for 2000-2019 in the US
This Paper

- Construct group-specific CPIs for 2000-2019 in the US
- Propose alternative housing cost measure to conventional owners’ equivalent rent (OER)
This Paper

- Construct group-specific CPIs for 2000-2019 in the US
- Propose alternative housing cost measure to conventional owners’ equivalent rent (OER)
- Investigate the role monetary policy plays in cost-of-living divergence
Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
Contributions to Literature

- Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)
- This paper makes three contributions:
Contributions to Literature

Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)

This paper makes three contributions:
1. Construct an alternative housing cost measure
Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)

This paper makes three contributions:

1. Construct an alternative housing cost measure
2. Identify ultimate drivers (literature mostly focused on divergence along the income distribution)
Contributions to Literature

Many papers looking at inflation inequality, see e.g. Jaravel (2021), Hobijn and Lagakos (2005)

This paper makes three contributions:

1. Construct an alternative housing cost measure
2. Identify ultimate drivers (literature mostly focused on divergence along the income distribution)
3. Consider monetary policy as a driver
Data

- Consumer Price Indices from Bureau of Labour Statistics (BLS)
Data

- Consumer Price Indices from Bureau of Labour Statistics (BLS)
- Household-level expenditure data from the Consumer Expenditure Survey (BLS)
Data

- Consumer Price Indices from Bureau of Labour Statistics (BLS)
- Household-level expenditure data from the Consumer Expenditure Survey (BLS)
- Monetary policy shocks: Kuttner (2001)
Outline of Presentation

1. Introduction
2. Group-specific CPIs
3. Ultimate Drivers
4. The Role of Monetary Policy
5. Conclusion
Section 2

Group-specific CPIs
Table: Illustration of group-specific CPI calculations

<table>
<thead>
<tr>
<th>Item</th>
<th>CPI</th>
<th>Weight (both)</th>
<th>Weight (A)</th>
<th>Weight (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food at home</td>
<td>105</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Electricity</td>
<td>110</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Footwear</td>
<td>97</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Group-specific CPI</td>
<td>-</td>
<td>103.6</td>
<td>104.1</td>
<td>103.1</td>
</tr>
</tbody>
</table>
Considerations for Group-Specific CPIs

Variable vs. fixed weights

Variable weights: more accurate at tracking true cost of living
Fixed weights: isolate price changes more clearly
Preferred: variable

Measuring housing costs
BLS measure of owners' cost: owners' equivalent rent (OER)
Good to measure price of "consumption goods"
Bad to measure cost of living, because it just tracks rents
Issue: rent and own costs can decouple considerably
Mortgage-based housing cost measure: principal + interest + maintenance + property taxes
Considerations for Group-Specific CPIs

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living

Measuring housing costs

BLS measure of owners' cost: owners' equivalent rent (OER)

Good to measure price of "consumption goods"

Bad to measure cost of living, because it just tracks rents

Issue: rent and own costs can decouple considerably

Mortgage-based housing cost measure: principal + interest + maintenance + property taxes
Considerations for Group-Specific CPIs

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly

Measuring housing costs

BLS measure of owners' cost: owners' equivalent rent (OER)

Good to measure price of "consumption goods"

Bad to measure cost of living, because it just tracks rents

Issue: rent and own costs can decouple considerably

Mortgage-based housing cost measure: principal + interest + maintenance + property taxes
Considerations for Group-Specific CPIs

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable
Considerations for Group-Specific CPIs

Variable vs. fixed weights

- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs

BLS measure of owners' cost: owners' equivalent rent (OER)

- Good to measure price of "consumption goods"
- Bad to measure cost of living, because it just tracks rents

Issue: rent and own costs can decouple considerably

Mortgage-based housing cost measure: principal + interest + maintenance + property taxes
Considerations for Group-Specific CPIs

Variable vs. fixed weights
- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs
- BLS measure of owners’ cost: owners’ equivalent rent (OER)
Considerations for Group-Specific CPIs

Variable vs. fixed weights
- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs
- BLS measure of owners’ cost: owners’ equivalent rent (OER)
- Good to measure price of “consumption goods”
Considerations for Group-Specific CPIs

Variable vs. fixed weights
- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs
- BLS measure of owners’ cost: owners’ equivalent rent (OER)
- Good to measure price of “consumption goods”
- Bad to measure cost of living, because it just tracks rents
Considerations for Group-Specific CPIs

Variable vs. fixed weights
- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs
- BLS measure of owners’ cost: owners’ equivalent rent (OER)
- Good to measure price of “consumption goods”
- Bad to measure cost of living, because it just tracks rents
- Issue: rent and own costs can decouple considerably
Considerations for Group-Specific CPIs

Variable vs. fixed weights
- Variable weights: more accurate at tracking true cost of living
- Fixed weights: isolate price changes more clearly
- Preferred: variable

Measuring housing costs
- BLS measure of owners’ cost: owners’ equivalent rent (OER)
- Good to measure price of “consumption goods”
- Bad to measure cost of living, because it just tracks rents
- Issue: rent and own costs can decouple considerably
- Mortgage-based housing cost measure: principal + interest + maintenance + property taxes
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible.
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible
- Illustration:

\[
\text{Housing price: } p_t = (1 + g) p_{t-1}
\]

\[
\text{Cost of renting: } c_{Rt} = \kappa p_t
\]

\[
\text{Cost of ownership: } c_{Ht} = \frac{1}{2} \sigma p_t + \frac{1}{2} \sigma p_{t-1}
\]

\[
\text{Own-to-rent cost: } c_{Ht}/c_{Rt} = \sigma^2 \kappa^2 + g^2 (1 + g)
\]

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. \(\frac{\partial c_{Ht}}{\partial g} < 0 \) implies higher housing price growth makes owning relatively cheaper

One conclusion of paper: low rates \(\rightarrow \) high housing price growth \(\rightarrow \) lower \(c_{Ht}/c_{Rt} \) \(\rightarrow \) lower inflation for owners
Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:
- Housing price: $p_t = (1 + g)p_{t-1}$

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. $\frac{\partial c_H}{\partial c_R} < 0$ implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates \rightarrow high housing price growth \rightarrow lower $c_H/c_R \rightarrow$ lower inflation for owners
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:
- Housing price: \(p_t = (1 + g)p_{t-1} \)
- Cost of renting: \(c^R_t = \kappa p_t \)

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. \(\frac{\partial c^H_t}{\partial c^R_t} < 0 \) implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates → high housing price growth → lower \(\frac{c^H_t}{c^R_t} \) → lower inflation for owners
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:
- Housing price: $p_t = (1 + g)p_{t-1}$
- Cost of renting: $c_t^R = \kappa p_t$
- Cost of ownership: $c_t^H = \frac{1}{2} \sigma p_t + \frac{1}{2} \sigma p_{t-1}$

Implications:
- If housing price growth, cost-to-price ratio, or rent-to-price ratio change, the ratio can diverge.
- E.g. $\frac{\partial c_t^H}{\partial c_t^R} < 0$ implies higher housing price growth makes owning relatively cheaper.

One conclusion of the paper: low rates \rightarrow high housing price growth \rightarrow lower c_t^H/c_t^R \rightarrow lower inflation for owners.
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

- Illustration:
 - Housing price: \(p_t = (1 + g)p_{t-1} \)
 - Cost of renting: \(c_t^R = \kappa p_t \)
 - Cost of ownership: \(c_t^H = \frac{1}{2} \sigma p_t + \frac{1}{2} \sigma p_{t-1} \)
 - Own-to-rent cost: \(\frac{c_t^H}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)} \)

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. \(\frac{\partial c_t^H}{\partial c_t^R} < 0 \) implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates → high housing price growth → lower \(\frac{c_t^H}{c_t^R} \) → lower inflation for owners
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

- Illustration:
 - Housing price: \(p_t = (1 + g)p_{t-1} \)
 - Cost of renting: \(c_t^R = \kappa p_t \)
 - Cost of ownership: \(c_t^H = \frac{1}{2} \sigma p_t + \frac{1}{2} \sigma p_{t-1} \)
 - Own-to-rent cost: \(\frac{c_t^H}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)} \)

- Implications:
 - Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
 - E.g. \(\frac{\partial c_t^H}{c_t^R} \frac{\partial g}{g} < 0 \) implies higher housing price growth makes owning relatively cheaper
 - One conclusion of paper: low rates \(\rightarrow \) high housing price growth \(\rightarrow \) lower \(\frac{c_t^H}{c_t^R} \) \(\rightarrow \) lower inflation for owners
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:
- Housing price: $p_t = (1 + g)p_{t-1}$
- Cost of renting: $c^R_t = \kappa p_t$
- Cost of ownership: $c^H_t = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1}$
- Own-to-rent cost: $\frac{c^H_t}{c^R_t} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)}$

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. $\frac{\partial c^H_t}{\partial g} \leq 0$ implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates \rightarrow high housing price growth \rightarrow lower $\frac{c^H_t}{c^R_t} \rightarrow$ lower inflation for owners
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:
- Housing price: \(p_t = (1 + g)p_{t-1} \)
- Cost of renting: \(c^R_t = \kappa p_t \)
- Cost of ownership: \(c^H_t = \frac{1}{2}\sigma p_t + \frac{1}{2}\sigma p_{t-1} \)
- Own-to-rent cost: \(\frac{c^H_t}{c^R_t} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)} \)

Implications:
- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. \(\frac{\partial c^H_t}{\partial g} < 0 \) implies higher housing price growth makes owning relatively cheaper
Housing Cost Measures

- Why can rent and own cost decouple? Because rent locked in for short time, while own cost is less flexible

Illustration:

- Housing price: \(p_t = (1 + g)p_{t-1} \)
- Cost of renting: \(c_t^R = \kappa p_t \)
- Cost of ownership: \(c_t^H = \frac{1}{2} \sigma p_t + \frac{1}{2} \sigma p_{t-1} \)
- Own-to-rent cost: \(\frac{c_t^H}{c_t^R} = \frac{\sigma}{\kappa} \frac{2+g}{2(1+g)} \)

Implications:

- Ratio can diverge if housing price growth, cost-to-price ratio, or rent-to-price ratio change
- E.g. \(\frac{\partial c_t^H}{\partial g} c_t^R < 0 \) implies higher housing price growth makes owning relatively cheaper
- One conclusion of paper: low rates \(\rightarrow \) high housing price growth \(\rightarrow \) lower \(c_t^H/c_t^R \) \(\rightarrow \) lower inflation for owners
2005-2007: own cost relatively worse
Housing Cost Measures

- 2005-2007: own cost relatively worse
- 2008-2015: rent cost relatively worse
CPI by Age Group
Divergence Drivers by Age Group

Contributors to inflation by age group, 2010-2020 (variable weights)

Overall CPI inflation

Category
- Housing
- Education
- Health
- Household exp.
- Transportation
- Entertainment
- Clothing
- Food

-24: [Diagram Bar]
25-34: [Diagram Bar]
35-44: [Diagram Bar]
45-54: [Diagram Bar]
55-64: [Diagram Bar]
65-74: [Diagram Bar]
75+: [Diagram Bar]
CPI by Income Group

CPI by income since 2000 (variable weights, mortgage)

- Income percentiles:
 - 0-20th
 - 21-40th
 - 41-60th
 - 61-80th
 - 81-100th

Consumer Price Index

Year:
- 2000
- 2005
- 2010
- 2015
- 2020
Contributors to inflation by income percentile, 2010-2020 (variable weights)
CPI by Renter/Owner Status
Divergence Drivers by Renter/Owner Status

Contributors to inflation by housing status, 2010-2020 (variable weights)

Overall CPI inflation

Category
- Housing
- Education
- Health
- Household exp.
- Transportation
- Entertainment
- Clothing
- Food

Renter

Owner
Section 3

Ultimate Drivers
Existing studies focusing on divergence by income, but why is this divergence happening?
What Factor Truly Matters?

- Existing studies focusing on divergence by income, but why is this divergence happening?
- Construct age/income/renter categories, e.g. young/rich/owners vs. old/rich/owners to isolate effect of each factor
Cost-of-living divergence is significant along age/income/housing lines.

- Renters/owner gap increased due to housing costs.
- Age gap increased due to health costs.
- Income mostly matters only through its correlation with housing/age.
Cost-of-living divergence is significant along age/income/housing lines. The divergence is primarily driven by housing and health expenditures.
Cost-of-living divergence is significant along age/income/housing lines.

The divergence is primarily driven by housing and health expenditures.

Turns out the key factors are:

- Renters/owner gap increased due to housing costs.
Cost-of-living divergence is significant along age/income/housing lines
The divergence is primarily driven by housing and health expenditures
Turns out the key factors are:
 ▶ Renters/owner gap increased due to housing costs
 ▶ Age gap increased due to health costs
Cost-of-living divergence is significant along age/income/housing lines

The divergence is primarily driven by housing and health expenditures

Turns out the key factors are:
- Renters/owner gap increased due to housing costs
- Age gap increased due to health costs

Income mostly matters only through its correlation with housing/age
Section 4

The Role of Monetary Policy
Does monetary policy cause inflation divergence?
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

$$\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,$$

where $CPI_{t,i}$ is CPI of group i (e.g. renters are i, owners are j), $MonShock_{t-k}$ is a monetary policy shock k months prior. The cumulative sums of the β_k give the IRF β_0: effect of shock on impact $\beta_0 + \beta_1$: cumulative effect one month after impact $\beta_0 + \beta_1 + \beta_2$: cumulative effect two months after impact, etc.
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[
\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,
\]

where

- \(CPI_{t,i} \) is CPI of group \(i \) (e.g. renters are \(i \), owners are \(j \)),

- \(MonShock_{t-k} \) is a monetary policy shock \(k \) months prior.
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[
\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t,
\]

where

- \(CPI_{t,i} \) is CPI of group \(i \) (e.g. renters are \(i \), owners are \(j \)),
- \(MonShock_{t-k} \) is a monetary policy shock \(k \) months prior.
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t, \]

where

- \(CPI_{t,i} \) is CPI of group \(i \) (e.g. renters are \(i \), owners are \(j \)),
- \(MonShock_{t-k} \) is a monetary policy shock \(k \) months prior.

- The cumulative sums of the \(\beta_k \) give the IRF
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k MonShock_{t-k} + \epsilon_t, \]

- where
 - \(CPI_{t,i} \) is CPI of group \(i \) (e.g. renters are \(i \), owners are \(j \)),
 - \(MonShock_{t-k} \) is a monetary policy shock \(k \) months prior.
- The cumulative sums of the \(\beta_k \) give the IRF
 - \(\beta_0 \): effect of shock on impact
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k \text{MonShock}_{t-k} + \epsilon_t, \]

- where
 - \(CPI_{t,i} \) is CPI of group \(i \) (e.g. renters are \(i \), owners are \(j \)),
 - \(\text{MonShock}_{t-k} \) is a monetary policy shock \(k \) months prior.
- The cumulative sums of the \(\beta_k \) give the IRF
 - \(\beta_0 \): effect of shock on impact
 - \(\beta_0 + \beta_1 \): cumulative effect one month after impact
Estimating IRFs

- Does monetary policy cause inflation divergence?
- Estimate impulse response functions as

\[
\Delta \frac{CPI_{t,i}}{CPI_{t,j}} = \alpha + \sum_{k=0}^{12} \beta_k \text{MonShock}_{t-k} + \epsilon_t,
\]

- where
 - \(CPI_{t,i}\) is CPI of group \(i\) (e.g. renters are \(i\), owners are \(j\)),
 - \(\text{MonShock}_{t-k}\) is a monetary policy shock \(k\) months prior.
- The cumulative sums of the \(\beta_k\) give the IRF
 - \(\beta_0\): effect of shock on impact
 - \(\beta_0 + \beta_1\): cumulative effect one month after impact
 - \(\beta_0 + \beta_1 + \beta_2\): cumulative effect two months after impact, etc.
Renters vs. owners (mortgage, variable weights)

Response of % CPI difference (percentage points)

Months after monetary shock
Age Group Divergence

55-64 vs. 25-34-year-olds (mortgage, variable weights)

Response of CPI difference (percentage points)

Months after monetary shock

Balázs Zélity (Wesleyan University)
Income Group Divergence

21-40th vs. 81-100th income (mortgage, variable weights)

Response of % CPI difference (percentage points)
-0.020 -0.015 -0.010 -0.005 0.000 0.005

Months after monetary shock
0 2 4 6 8 10 12
Section 5

Conclusion
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups

Key dimensions of divergence: age, income, housing status

Key items driving divergence: housing and health

Ultimate factors: renter/owner (for housing) and age (for health)

Monetary policy contributing to housing-related divergence, but not to health-related divergence

Especially health, but also housing likely plagued by structural issues:
 - Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)
 - Health: lack of competition, other issues (Case and Deaton, 2020)
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status

Key items driving divergence: housing and health

Ultimate factors: renter/owner (for housing) and age (for health)

Monetary policy contributing to housing-related divergence, but not to health-related divergence

Especially health, but also housing likely plagued by structural issues:

▶ Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)

▶ Health: lack of competition, other issues (Case and Deaton, 2020)
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:
 - Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)
 - Health: lack of competition, other issues (Case and Deaton, 2020)
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:
 - Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)
Conclusion

- Up to 0.6 p.p. annual inflation rate difference between groups
- Key dimensions of divergence: age, income, housing status
- Key items driving divergence: housing and health
- Ultimate factors: renter/owner (for housing) and age (for health)
- Monetary policy contributing to housing-related divergence, but not to health-related divergence
- Especially health, but also housing likely plagued by structural issues:
 - Housing: regulations reducing housing supply (Glaeser and Gyourko, 2018), investment demand (Chen et al., 2012)
 - Health: lack of competition, other issues (Case and Deaton, 2020)