Matching it up: non-standard work and job satisfaction

Katarzyna Bech Magdalena Smyk Joanna Tyrowicz Lucas van der Velde

Income and wealth inequality: drivers and consequences Gdansk, September 2023

Motivation

- Ambiguity haunts empirical work on job satisfaction and flexibility
 - Wheatley (2017): correlations positive for M and negative for W
 - Bellmann and Hübler (2020): patterns for JS unclear, correlations with WLB negative.
 - Hayman (2009): correlations with FWC and WFC lower

Motivation

- Ambiguity haunts empirical work on job satisfaction and flexibility
 - Wheatley (2017): correlations positive for M and negative for W
 - Bellmann and Hübler (2020): patterns for JS unclear, correlations with WLB negative.
 - Hayman (2009): correlations with FWC and WFC lower
- Workers offered flexibility are happy

(Atkinson et al. 2011, Bloom et al. 2015, O'Connor and Cech 2018, Hamplová 2019)

Motivation

- Ambiguity haunts empirical work on job satisfaction and flexibility
 - Wheatley (2017): correlations positive for M and negative for W
 - Bellmann and Hübler (2020): patterns for JS unclear, correlations with WLB negative.
 - Hayman (2009): correlations with FWC and WFC lower
- Workers offered flexibility are happy

(Atkinson et al. 2011, Bloom et al. 2015, O'Connor and Cech 2018, Hamplová 2019)

 (Some) People lack boundary management strategies and suffer when forced to set them (Lee et al. 2002, Kossek et al. 2004, Bainbridge and Townsend 2020)

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つへの</p>

Flexibility enactment theory \rightarrow match between a person and work arrangements

I *Inclination* to specific working arrangements (WA) is: individual,

Flexibility enactment theory \rightarrow match between a person and work arrangements

I *Inclination* to specific working arrangements (WA) is: individual, potentially time-varying,

<ロト < 即 ト < 臣 ト < 臣 ト 三 の < で</p>

Flexibility enactment theory \rightarrow match between a person and work arrangements

I *Inclination* to specific working arrangements (WA) is: individual, potentially time-varying, and unobservable

Flexibility enactment theory \rightarrow match between a person and work arrangements

- Inclination to specific working arrangements (WA) is: individual, potentially time-varying, and unobservable
- 2 Machine learning to uncover latent link between JS and WA ...
- 3 ... and obtain counterfactual levels of JS ...
- 4 thus identify individuals who are (mis)matched

Hypotheses

H1 Ability to actively manage boundaries is higher for women and parents.H2 Overall job satisfaction with NWAs is higher than in a scenario eliminating NWAs.

European Working Conditions Survey

Spans 2001-2015; every five years, 36 countries, approx. 1000 workers

salaried workers, aged between 18 and 65 years of age, private employer

European Working Conditions Survey

Spans 2001-2015; every five years, 36 countries, approx. 1000 workers

salaried workers, aged between 18 and 65 years of age, private employer

Broad range of individual and HH characteristics:

gender, age, education, HH-structure, tenure, health

European Working Conditions Survey

Spans 2001-2015; every five years, 36 countries, approx. 1000 workers

salaried workers, aged between 18 and 65 years of age, private employer

Broad range of individual and HH characteristics:

gender, age, education, HH-structure, tenure, health

Rich on work characteristics:

occupation, industry, temporary/permanent, (long) hours, work on weekends, commute, direct hazards, discomfort (tedious tasks, etc), wearing protective gear, hours fit schedules, supportive colleagues, enough time to finish tasks, etc.

European Working Conditions Survey

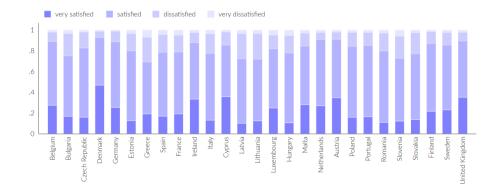
Spans 2001-2015; every five years, 36 countries, approx. 1000 workers

salaried workers, aged between 18 and 65 years of age, private employer

Broad range of individual and HH characteristics:

gender, age, education, HH-structure, tenure, health

Rich on work characteristics:


occupation, industry, temporary/permanent, (long) hours, work on weekends, commute, direct hazards, discomfort (tedious tasks, etc), wearing protective gear, hours fit schedules, supportive colleagues, enough time to finish tasks, etc.

■ Job satisfaction: 4-level categorical scale

Descriptive statistics

Job satisfaction across countries in waves in EWCS

GRAPE

Non-standard working arrangements (NWAs)

Six non-standard working arrangements (NWAs):

- varying hours,
- nights,
- long hours,
- Sundays

Non-standard working arrangements (NWAs)

Six non-standard working arrangements (NWAs):

- varying hours,
- nights,
- long hours,
- Sundays
- long & varying hours
- Sundays & nights

NWAs across countries in EWCS

The link between NWAs and JS is ambiguous and endogeneous

I ML model of JS: low level of arbitrariness, use all available variables

individual and household characteristics + job characteristics

The link between NWAs and JS is ambiguous and endogeneous

- I ML model of JS: low level of arbitrariness, use all available variables
 - individual and household characteristics + job characteristics
- Estimate it for people who work in <u>standard WAs</u> (reference group, NWA=0)
 ML model works well

The link between NWAs and JS is ambiguous and endogeneous

- **1** ML model of JS: low level of arbitrariness, use all available variables
 - individual and household characteristics + job characteristics
- Estimate it for people who work in <u>standard WAs</u> (reference group, NWA=0)
 ML model works well
- 3 Obtain counterfactual JS for each individual with NWA as if no NWA

オロトオ母 トオヨトオヨト ヨークタウ

The link between NWAs and JS is ambiguous and endogeneous

- I ML model of JS: low level of arbitrariness, use all available variables
 - individual and household characteristics + job characteristics
- Estimate it for people who work in <u>standard WAs</u> (reference group, NWA=0)
 ML model works well
- 3 Obtain counterfactual JS for each individual with NWA as if no NWA
- 4 Compare the actual and the counterfactual levels of JS:

 ΔJS_i = Factual JS_i – Counterfactual JS_i

Does taking away NWAs improve job satisfaction?

A counterfactual experiment of taking away NWA.

Example 1: dissatisfied to very satisfied = 4 - 1 = 3Example 2: very satisfied to dissatisfied = 1 - 4 = -3

 $Improvement(Y/N)_{i} = \beta_{0} + \beta_{w} \times woman + \beta_{p} \times parent + \gamma_{i}woman \times parent + \delta \mathbb{X} + \epsilon_{i} \quad (M1)$ $\Delta JS_{i} = \beta_{0} + \beta_{w} \times woman + \beta_{p} \times parent + \gamma_{i}woman \times parent + \delta \mathbb{X} + \epsilon_{i} \quad (M2)$

Mismatch in working arrangements

We classify workers into:

actual and counterfactual job satisfactions are the same – indifferent a worker is just as well off with and without NWA

Mismatch in working arrangements

We classify workers into:

- actual and counterfactual job satisfactions are the same indifferent a worker is just as well off with and without NWA
- job satisfaction is higher in actual than in counterfactual matched
 a worker is better of keeping NWA and would lose from having standard working arrangements

・ロト・日本・ヨト・ヨー シック

Mismatch in working arrangements

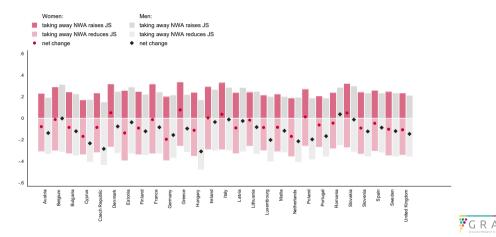
We classify workers into:

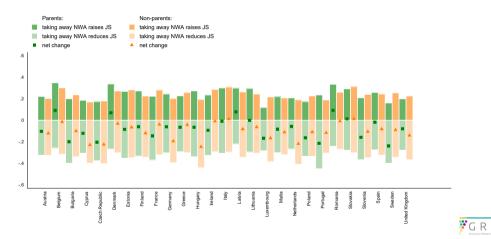
- actual and counterfactual job satisfactions are the same indifferent
 a worker is just as well off with and without NWA
- job satisfaction is higher in actual than in counterfactual matched a worker is better of keeping NWA and would lose from having standard working arrangements
- job satisfaction is lower in actual than in counterfactual mismatched a worker would benefit from changing from NWA to standard working arrangements

・ロト・日本・日本・日本・日本・日本・○への

We aggregate the individuals to country-level measures.

Does taking away NWAs improve job satisfaction?


	All NWA samples				
	Logit	OLogit			
woman (β_w)	-0.17***	-0.19***			
	(0.03)	(0.03)			
parent (β_p)	-0.24***	-0.23***			
	(0.05)	(0.04)			
woman $ imes$ parent (γ)	0.13***	0.13***			
	(0.07)	(0.06)			
Observations	27 729				


Does taking away NWAs improve job satisfaction?

	Varying hours		Nights		Long hours		Sundays	
	Logit	OLogit	Logit	OLogit	Logit	OLogit	Logit	OLogit
woman (β_w)	-0.08	-0.12**	-0.13	-0.19***	-0.29***	-0.32***	-0.01	-0.03
	(0.07)	(0.06)	(0.10)	(0.09)	(0.06)	(0.06)	(0.07)	(0.05)
parent (β_p)	-0.22**	-0.26***	-0.19*	-0.28***	-0.08	-0.12	-0.31***	-0.31***
	(0.13)	(0.11)	(0.13)	(0.11)	(0.11)	(0.09)	(0.14)	(0.09)
woman $ imes$ parent (γ)	-0.01	0.04	-0.54	0.01	0.09	0.10	0.15	0.17
	(0.19)	(0.13)	(0.43)	(0.25)	(0.19)	(0.17)	(0.18)	(0.13)
Observations	6 312		1 728		4 461		5 577	
	Long & varying hours		Sundays & nights				All NWA	samples
	Logit	OLogit	Logit	OLogit			Logit	OLogit
woman (β_w)	-0.30***	-0.31***	0.01	-0.01			-0.17***	-0.19***
(,	(0.08)	(0.07)	(0.05)	(0.06)			(0.03)	(0.03)
	0 41 ****	-0.25***	-0.21***	-0.20***			-0.24***	-0.23***
parent (β_p)	-0.41***	-0.25	-0.21	-0.20			-0.24	
parent (β_p)	(0.09)	(0.08)	(0.07)	(0.06)			(0.05)	(0.04)
parent (eta_{p}) woman $ imes$ parent (γ)								(0.04) 0.13***
	(0.09)	(0.08)	(0.07)	(0.06)			(0.05)	

Mismatch in working arrangements across countries

Mismatch in working arrangements across countries

- Conclusions

Summary

Build on flexibility enactment theory Study match between workers and WA

- women and parents would not benefit from a removing NWAs;
- across countries: substantial room for raising JS by better aligning workers with WA;

GR

- Conclusions

Summary

Build on flexibility enactment theory Study match between workers and WA

- women and parents would not benefit from a removing NWAs;
- across countries: substantial room for raising JS by better aligning workers with WA;

no one-size-fits-all policy

- j.tyrowicz@grape.org.pl e:
- t: grape_org grape.org

f:

- w:
- grape.org.pl

Questions or suggestions? Thank you!

▲ロト ▲ 理 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q @

Matching it up: non-standard work and job satisfaction

- Conclusions

References I

- Atkinson, C., Lucas, R. and Hall, L.: 2011, Flexible working and happiness in the nhs, Employee Relations 33, 88-105.
- Bainbridge, H. T. and Townsend, K.: 2020, The effects of offering flexible work practices to employees with unpaid caregiving responsibilities for elderly or disabled family members, *Human Resource Management* **59**(5), 483–495.
- Bellmann, L. and Hübler, O.: 2020, Working from home, job satisfaction and work-life balance-robust or heterogeneous links?, International Journal of Manpower.
- Bloom, N., Liang, J., Roberts, J. and Ying, Z. J.: 2015, Does working from home work? evidence from a chinese experiment, *The Quarterly Journal of Economics* **130**(1), 165–218.
- Hamplová, D.: 2019, Does work make mothers happy?, Journal of Happiness Studies 20(2), 471-497.
- Hayman, J. R.: 2009, Flexible work arrangements: Exploring the linkages between perceived usability of flexible work schedules and work/life balance, *Community, work & family* 12(3), 327–338.
- Kossek, E. E., Lautsch, B. A. and Eaton, S. C.: 2004, Chapter 12: Flexibility enactment theory: Implications of flexibility type, control, and boundary management for work-family effectiveness, *Work and Life Integration: Organizational, Cultural and Individual Perspectives*, Psychology Press.
- Lee, M. D., MacDermid, S. M., Williams, M. L., Buck, M. L. and Leiba-O'Sullivan, S.: 2002, Contextual factors in the success of reduced-load work arrangements among managers and professionals, *Human Resource Management* 41(2), 209–223.
- O'Connor, L. T. and Cech, E. A.: 2018, Not just a mothers' problem: The consequences of perceived workplace flexibility bias for all workers, *Sociological Perspectives* 61(5), 808–829.
- Wheatley, D.: 2017, Employee satisfaction and use of flexible working arrangements, Work, Employment and Society G R A P E31(4), 567–585.

References

Descriptive statistics

Variable	Full sample	Reference group	Varying hours	Nights	Long hours	Sundays	Long & varying h.	Sundays & nights
% satisfied with their job	82.9	85.1	84.6	75.5	81.0	78.3	83.7	76.2
Personal characteristics:								
% of women	40.4	46.1	46.4	23.7	27.7	52.0	20.3	25.6
% of single hh	10.3	10.2	11.5	10.3	9.5	9.4	11.6	10.0
% of hh with a child aged ₁ 7 yo	12.3	12.0	12.8	13.1	12.2	11.6	14.0	12.2
% of hh with an elder member	1.5	1.5	1.0	1.8	1.1	1.6	1.8	2.2
Job characteristics:								
% working part-time	11.2	11.8	18.5	6.8	4.0	17.5	2.8	7.9
% working on Saturdays	37.6	23.1	30.9	35.8	33.8	89.7	33.5	90.7
% report hours fit schedules	81.9	89.5	86.4	74.7	78.4	71.6	71.1	58.1
% report supportive colleagues	92.7	92.5	91.1	92.4	95.1	92.6	93.2	93.2
% report enough time for tasks	92.8	94.1	93.6	93.5	89.6	92.4	88.1	91.9
% with long commute	29.7	27.0	30.6	28.1	36.2	26.3	40.6	32.0
hazardous conditions (count)	3.03	2.95	2.67	4.00	3.23	3.19	2.78	3.53
NWAs:								
% working in varying hours	11.9	0	100	0	0	0	0	0
% working nights	3.6	0	0	100	0	0	0	0
% working in long hours	8.1	0	0	0	100	0	0	0
% working on Sundays	8.4	0	0	0	0	100	0	0
% working long&varying hours	8.7	0	0	0	0	0	100	0
% working on Sunday nights	8.5	0	0	0	0	0	0	100
Observations	56 107	28 378	6 312	1 728	4 461	5 577	4 408	5 243

- References

ML works: true vs model JS in the sample

	ML - Random Forest Predicted JS				Parametric (OLogit) Predicted JS				
Actual JS	1	2	3	4	1	2	3	4	
	Cell %	Cell %	Cell %	Cell %	Cell %	Cell %	Cell %	Cell %	
very satisfied (1)	15.6	3.9	1.9	1.2	2.3	20.7	0.0	0.0	
satisfied (2)	11.1	35.2	10.2	6.1	1.8	58.7	0.2	0.0	
dissatisfied (3)	1.2	1.4	8.3	1.3	0.1	13.0	0.2	0.0	
very dissatisfied (4)	0.1	0.1	0.2	2.3	0.0	2.6	0.2	0.0	
Ν	8 302	11 094	5 932	3 050	1 218	26 965	187	8	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●