

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Disentangling the Effects of Polycrisis and Policy Changes Shaking the Austrian Housing Market: Pandemic, Tightened Bank Lending Criteria and Inflation

Sanela Omerovic^{ab} Anja M. Hahn^{ab} Sofie R. Waltl^{ca} ^a Vienna University of Economics and Business ^b DataScience Service GmbH ^c University of Cambridge

29 November 2023 (LIS)²ER Workshop: Policies to Figth Inequality: Housing Policy and Wealth Inequality

This project benefits from funding by the OeNB Anniversary Fund (Grant No. 18767)

- How to holistically measure the effects of (macro)economic shocks not origin within the housing market on a country's housing market?
- Depending on the type of shock, either the supply or the demand side are expected to react first
- Some crises or events are expected to have an immediate impact while others likely evolve gradually
- Which housing market data should best be use to study such complex implications holistically?

ヘロト 人間 ト 人団 ト 人団 ト

= 900

Framework

Framework that allows to identify and quantify effects along the following lines

- prices versus quantities
- immediate versus gradually evolving effects
- led by the supply versus the demand side

イロト イポト イヨト イヨト

DQC

Framework

Framework that allows to identify and quantify effects along the following lines

- prices versus quantities
- immediate versus gradually evolving effects
- led by the supply versus the demand side
- For that, we estimate **hedonic price** and (quasi-hedonic) **quantity** models
 - Hedonic price model: estimation of a hierarchical model to account for the large geographical heterogeneity of housing markets
 - Quasi-hedonic count model: estimation of a count model (Negative Binomial fits best!) that models the number of transactions again accounting for location

Framework

Framework that allows to identify and quantify effects along the following lines

- prices versus quantities
- immediate versus gradually evolving effects
- led by the supply versus the demand side
- For that, we estimate hedonic price and (quasi-hedonic) quantity models
 - Hedonic price model: estimation of a hierarchical model to account for the large geographical heterogeneity of housing markets
 - Quasi-hedonic count model: estimation of a count model (Negative Binomial fits best!) that models the number of transactions again accounting for location
- To differentiate between supply- and demand-side effects, we use data that proxies the agent that moves first
 - Advertisements (A): Immediate Effects led by the Supply Side
 - Notary Deeds (D): Delayed Effects reflecting joint Demand- and Supply-Side effects
 - Intermediate "Brokered Advertisments" (use of a marker set for an advertisement by real estate agents in their Austria-wide database once a property is brokered) (A^B) : Timely effects reflecting joint Demand- and Supply-Side effects

Sac

イロト イボト イヨト イヨト

Data pool collected by Data Science Service GmbH

- Use of brokers' database reporting advertised (A) and final (A^B) prices and all standard hedonic controls as well as the flag when/whether the property was sold
- These data come with rich set of hedonic controls and amended details from official statistics
- Notary Deeds: (D) "Grundbuch" incl. date of transaction (date of signing the contract), price and location

Which (Macro-)Shocks Hit the Austrian Housing Market?

- The pandemic: restrictions, uncertainty and change of tastes
- Inflation and Interest Rate Hikes
 - Cost-of-living issues: income effects and
 - Interest Hikes (Monetary Policy Actions) -> Expensive Mortgages (wealth and income effects)
 Credit Channel and Polance Sheet Channel

Sac

5 / 30

Real Estate Data

Credit Channel and Balance Sheet Channel

 Tightening of Bank Landing Standards: Loan-to-value restrictions (wealth effect), Mortgage Duration (age effect), Income-to-Instalment Restrictions (income effects)

- Separate Models for Price and Quantity Effects
- Depending on the hypothesis tested: models are fed with the most appropriate data and effects are estimated as gradual or immediate effect
- Various "crises proxies" (normative and positive) added for identifying the additional effects

DQC

	Event	Description	Type	Source
Lockdowns	Pandemic	Timing of lock- downs	Ν	RIS
Mobility	Pandemic	Mobility related to workplace travel	Р	Google Mobility Data
Incidence Rate	Pandemic	Confirmed COVID cases	Р	Austrian Federal Ministry of Social Affairs, Health, Care and Con- sumer Protection
Policy Enactment	Bank-Lending Standards	Timing of enact- ment	Ν	RIS
New loans	Bank-Lending Standards	Volume of new loans to house- holds for housing purposes	Р	OeNB & ECB
Inflation	Inflation	Changes in the national con- sumer price index	Р	OeNB & ECB
Mortgage Interest Rates	Inflation	Changes in av- erage lending rates for new mortgages	Р	OeNB & ECB
EURIBOR	Inflation	Changes in the 3 months Euro Interbank Offered Bate	Р	European Money Markets Institute
Policy Rate	Inflation	Hikes in the ECB policy rate	Ν	ECB

Models

Model framework

Hierarchies based on Austrian administrative divisions

- 1. Individual apartments/houses level (i) $\log p_{ids} = \beta_{0ds} + \mathbf{X}_{1ids}\beta_1 + \varepsilon_{0ids} \text{ with } \varepsilon_{0ids} \sim \mathcal{N}(0, \sigma_{\varepsilon_{0ids}}^2),$
- 2. District level (d) $\beta_{0ds} = \beta_{0s} + \mathbf{X}_{2ds}\beta_2 + \varepsilon_{0ds}$ with $\varepsilon_{0ds} \sim \mathcal{N}(0, \sigma_{\varepsilon_{0ds}}^2)$,
- 3. Federal state level (s)

$$\beta_{0s} = \beta_0 + \mathbf{X}_{3s}\beta_3 + \varepsilon_{0s} \text{ with } \varepsilon_{0s} \sim \mathcal{N}(0, \sigma_{\varepsilon_{0s}}^2).$$

This set-up collapses to the single model equation

$$\log p_{ids} = \beta_0 + \mathbf{X}_{1ids}\beta_{1ds} + \mathbf{X}_{2ds}\beta_{2ds} + \mathbf{X}_{3s}\beta_3 + \varepsilon_i,$$

with $\varepsilon_i = \varepsilon_{0ids} + \varepsilon_{0ds} + \varepsilon_{0s}$ and $\varepsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon_{0ids}}^2 + \sigma_{\varepsilon_{0ds}}^2 + \sigma_{\varepsilon_{0s}}^2)$.

 β_{0ds} and β_{0s} : random intercepts; ε_{0ds} , ε_{0ds} : random/group-level effects; $\sigma_{\varepsilon_{0ds}}^2$, $\sigma_{\varepsilon_{0s}}^2$: between-unit variances

8 / 30

Negative binomial regression model

Number of transactions y as response variable with pdf

$$f(y;\mu,\theta) = \frac{\Gamma(y+\theta)}{\Gamma(\theta) \cdot y!} \cdot \frac{\mu^{y} \cdot \theta^{\theta}}{(\mu+\theta)^{(y+\theta)}}$$

Models

9 / 30

Independent variables: Housing type (apartment, one-family house), time dummies, location (federal state, urban/rural classification), seasonal effect

- We develop 6 hypotheses two per "event": price and quantity effects
- Supplemental event-specific hypotheses
- We specify for each hypothesis, which data source proxies the channel best who are the leading agents?
 - each with various predictions
- I show today a selection of results work in progress!

590

Pandemic

Hypothesis (Pandemic Quantity Effects)

Quantity effects, in general comprehensively measured by (D), triggered by dampened economic activity are expected to vary over time in the following way:

- 1. During the *initial general lock-down* following the break-out of the COVID-19 pandemic, the sudden slow-down of all human interactions is expected to lead to a significant *shrinkage of successfully transacted dwellings*.
- Legally binding restrictions on human interactions are always expected to lead to a slow-down of housing sales. Yet, the adaptation of business modalities to a "new normal" means a weaker response to following periods of restrictions.
- 3. An observable **decrease of mobility** also means a **slow-down of selling- and buying activities**. Adaption of business strategies to the new setting also means a weaker response to reduced mobility over time.
- 4. The slow-down of all human interactions is expected to have a **weaker effect on advertisements** in the short-run. Yet, **delays in construction and general interactions** necessary to conclude housing transactions are expected to occur with a **positive time-lag**.

Hypothesis (Pandemic Price Effects)

We distinguish between **immediate and gradual** price effects representing a **slow-down of economic activity** and a **shift of preferences**, respectively. Effects are expected to differ between **types of properties** and thus are best measured using (A) **and** (A^B). We expect

- 1. price drops during periods of restrictions or low economic activity. The severity of such drops diminishes over time.
- 2. gradually increasing relative prices for properties offering open space amenities.
- 3. gradually increasing relative prices for properties in non-urban areas.
- 4. gradually decreasing relative prices for **studios and micro-apartments**.

DQC

Timing of Lockdowns

Start of Lockdowns

End of Lockdowns

E Jac

	Response: Count		
1st Lockdown	-0.58***	-0.57***	
	(0.04)	(0.04)	
2nd Lockdown		-0.16^{***}	
		(0.05)	
3rd Lockdown		-0.30***	
		(0.04)	
Regional lockdown (B,W,N)		0.01*	
		(0.05)	
4th Lockdown		-0.17^{***}	
		(0.05)	
Observations	7 482	7 482	
AIC	126 757	126 695	

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● 今 � �

Effects of COVID-19 Lockdowns on House Prices (Adverts)

	Res	ponse: Price (log)
All Lockdowns	-0.020*** (0.004)		
1st Lockdown	· · ·	-0.063^{***} (0.009)	-0.063^{***} (0.009)
2nd Lockdown			-0.028 ^{**} (0.009)
3rd Lockdown			0.003 (0.008)
Regional Lockdowns			-0.007 (0.009)
4rd Lockdown			-0.008 (0.010)
Housing characteristics	\checkmark	\checkmark	\checkmark
Time Variable Location Fixed Effects	\checkmark	\checkmark	\checkmark
Location Random Effects	\checkmark	\checkmark	

୬ < ୍ 15 / 30

Effects of COVID-19 on Urban and Rural Areas (Adverts and Deeds)

	Response: Price (log)	
	(1)	(2)
	Adverts	Deeds
Urban	0.002	0.032***
	(0.007)	(0.008)
COVID-19	-0.042**	0.050**
	(0.013)	(0.018)
Urban $ imes$ COVID-19	-0.014*	-0.035***
	(0.006)	(0.007)
Housing characteristics	\checkmark	\checkmark
Time Variable	\checkmark	\checkmark
Location Fixed Effects	\checkmark	\checkmark
Location Random Effects	\checkmark	\checkmark
Number of observations	51 353	29 791
Adj. R ² (marginal)	0.747	0.702
Adj. R ² (conditional)	0.822	0.785

クへで 16 / 30

COVID Price Effect: Marginal Effect of Properties w/ Open Space

Hypotheses and Test Results 17 / 30

590

э

Effects of Mobility Reduction and COVID-19 Deaths on Prices

A 1

Adverts		
	Response: Price (log)	
Reduced Mobility (Normalised)	-0.060^{***} (0.011)	
New COVID-19 Related Deaths (Normalised)		0.008 (0.027)
Housing Characteristics	\checkmark	\checkmark
Time Variable	\checkmark	\checkmark
Location Fixed Effects	\checkmark	\checkmark
Location Random Effects	\checkmark	\checkmark
Number of observations Adj. R ² (marginal) Adj. R ² (conditional)	32,750 0.740 0.826	32,750 0.742 0.825

Notes: Reduced time period for model including mobility data due to lack of data availability: 26 Feb 2020 - 28 Feb 2022

- 4 ⊒ →

< A

3 590

- Inflationary period starting in mid-2021 meant both, a tighter budget for consumers but also a general more pessimistic economic outlook
- Tighter budget: employers do not have to immediately adjust wages (not like in Luxembourg) but only once per year following several round of sector-specific **collective bargaining** ("Sozialpartnerschaft")
- Average CPI-inflation over the past 12 months acts as a benchmark
- Effective a loss in purchasing power with every additional month the current inflation rate exceeds wage increases in the same month

= 900

Hypothesis (Inflation and Interest Rates Hikes Quantity Effects)

Effects are expected to be visible with a time-lag due to a lag of direct information on changes in buyers' behaviour. We rely again on (D) yet expect changes to be evolve with a lag. Concretely, we expect

- 1. **delayed and gradually evolving drops** in concluded transactions.
- 2. that declines are negatively lagged-correlated with **changes in the consumer price index**.
- 3. that declines are negatively lagged-correlated with interest rate hikes by the ECB.

Hypothesis (Inflation and Interest Rates Hikes Price Effects)

Effects are expected to be visible with a **time-lag** due to a lag of direct information on **changes in buyers' behaviour**. We thus rely, as a second-best option, on (A^B) yet expect changes to be visible with a lag. Concretely, we expect

- 1. delayed and gradually evolving stagnation or even drops in prices.
- 2. that declines are **negatively lag-correlated** with changes in the **consumer price index**.
- 3. that declines are **negatively lag-correlated with interest hikes** by the ECB.

- Increasing the cost-of-borrowing hampers housing investments. Well documented bank lending channel and balance-sheet (or credit) channel (lacoviello and Minetti, 2008).
- Supported by survey evidence: *Austrian Corona Panel Project (ACPP)* reported by Resch and Ausserladscheider, 2022: Between October 2021 and March 2022 the share of people stating a negative outlook increased by 25pp from 37% to 62%.

▲ ≣ ▶ ≣ ∽ ९ ୧ ୧

22 / 30

Hypotheses and Test Results

- Severe gradual slow-down of transactions: number of notary deeds and brokered advertisements dropping
- Prices are gradually decreasing both advertised and final prices

	Response:	Price (log)
Interest Rate (New Mortgages) (3 months lag)	-0.066* (0.029)	
Interest Rate (New Mortgages)	. ,	-0.142^{***}
(6 months lag)		(0.043)
Housing characteristics	\checkmark	\checkmark
Time Variable	\checkmark	\checkmark
Location Fixed Effects	\checkmark	\checkmark
Location Random Effects	\checkmark	\checkmark
Number of observations	37,158	37,158
Adj. R ² (marginal)	0.701	0.701
Adj. R ² (conditional)	0.783	0.783

KIM-VO Regulation

The Kreditinstitute-Immobilienfinanzierungsmaßnahmen-Verordnung (KIM-VO) requires

- (i) a maximum mortgage duration of 35 years,
- (ii) a maximum loan-to-value ratio^a (LTV) of 80%, and
- (iii) a maximum **debt-service ratio**^b (DSR) of 40%.

Regulation announced: December 2021 Regulation enacted: August 2022

^aThe loan-to-value ratio is defined as the amount borrowed relative to the value of the property purchased. ^bThe debt-service ratio is defined as the monthly amount of debt service payments (interest plus plus amortisations) relative to disposable household income.

Hypothesis (Bank-Lending Standards Quantity Effects)

Tightened requirements to obtain a mortgage mean that **the group of buyers eligible for a mortgage** financing the purchase **shrinks**. This concerns both, potential buyers lacking **sufficient wealth** to meet the LTV requirements, **sufficient income** meeting the DSR requirements or older people. Thus, (A^B) and (D) are expected to **gradually fall**. As stricter lending standards set an **upper limit to prices affordable** to prospective buyers means more **crowding out** in **higher price segments** and **fewer transactions** when **moving up the price distribution**.

Hypothesis (Bank-Lending Standards Price Effects)

Price effects triggered by changes in enforced bank landing standards are the consequence of crowding-out effects: A smaller number of actors is bidding for dwellings. Further, price pressure is shifted: the more expensive a dwelling the fewer bidders. This shift in the market power of the demand side mechanically leads to

- 1. a gradual decrease in prices measured via (A) and (A^D) .
- 2. a gradual but more pronounced decrease of prices in higher price segments.

Results Bank Lending Standards

This is work in progress!

▲□▶ < 圕▶ < ■▶ < ■▶ < ■ > ○ へ ○
 Hypotheses and Test Results
 27 / 30

- Model Framework to identify the impact of different housing-external shocks on the housing market
- Price and Quantity Models
- Feed models with advertisement, brokered advertisements, or notary deeds to measure through which side of the market the effect evolves
- Form hypotheses how several external shocks should impact the market and test them using the corresponding model (quantities, prices) and data

Conclusions II

Findings:

- Pandemic: Short-term negative effect of first lockdown on real estate prices in Austria
- Timing of first lockdown as well as changes in mobility explain short-term dynamics of real estate price developments
- Pandemic: Immediate recovery and price increases above pre-COVID-19 trend level
- Pandemic: Prices of properties in rural areas and with access to open space experienced a larger increase
- Pandemic: Quantities drop with the first lockdown and remained at a lower level ever since then
- BLS: Prices decrease gradually identified via timing of the policy
- BLS: Heterogeneity analysis under construction...
- Inflation & Interest Hikes: Sentiments indicate quite pessimistic outlook
- Inflation & Interest Hikes: Credit channel and balance sheet channel predict decreases in prices confirmed again

= nar

lacoviello, M., & Minetti, R. (2008). The credit channel of monetary policy: Evidence from the housing market. *Journal of Macroeconomics*, 30(1), 69–96.

Conclusions and outlook

30 / 30

Resch, T., & Ausserladscheider, V. (2022). Inflation expectations and economic outlook in Austria since the beginning of the pandemic [Accessed: November 2023].