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Abstract. The jackknife is a resampling method that uses subsets of the original database by 

leaving out one observation at a time from the sample. The paper outlines a procedure to obtain 

jackknife estimates for several inequality indices with only a few passes through the data. The 

number of passes is independent of the number of observations. Hence, the method provides an 

efficient way to obtain standard errors of the estimators even if sample size is large. We apply our 

method using micro data on individual incomes for Germany and the US. 
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1	Introduction	

When examining time-series changes in inequality or cross country differences in inequality, the 

measured changes are sometimes small. To estimate the precision of a statistic from a sample and 

to test the statistical significance of changes or cross country differences of the same statistic, the 

jackknife has been suggested.1 The jackknife is a resampling method that uses subsets of the 

original database by leaving out one observation at a time from the sample. So, there are as many 

subsets as there are observations in the sample, and for each subset the jackknife statistic needs to 

be computed. This means that the jackknife can become a time intensive procedure when the 

sample size is large.  

Figure 1 provides an illustration of this problem for a hypothetical income distribution. 

Particularly, it shows the computer time needed for deriving several well-known inequality 

indices2 from all the jackknife subsets using the frequently used STATA software 

‘inequal7.ado.’3 We start with a sample size of four, which then is always doubled. For small 

sample sizes (<5000) it takes only a few second to compute all the jackknife indices. For larger 

sample sizes, however, computer time increases exponentially: for 10,240 observations 

jackknifing takes 2.52 minutes; for 20,480 observations it takes 9.82 minutes; and for 81,920 it 

takes 261.70 minutes. Many comparative inequality analyses step on data from several points in 

time, countries and income concepts. Then implementing the jackknife can take days or weeks. 

This is a serious problem for researchers who need to access data that are stored on external 

servers, and who face limited processing power for their computations as defined by the data 

provider. The well-known Luxembourg Income Study is one important example. 

 

Figure 1 about here  

                                                            
1 For the theoretical justification for the jackknife and other related resampling techniques see Efron (1982). 
2 The inequality indices are: relative mean deviation; coefficient of variation; standard deviation of logs; Gini 
coefficient; Mehran index; Piesch index; Kakwani index; Theil index; Mean Log Deviation; Generalized entropy 
measures with sensitivity parameter -1 and 2. 
3 The software is run on the following hardware: 64-bit system; 8 GB ram; core(TM)2 Duo CPU;  3GHz.  
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Karagiannis and Kovacevic (2000) and Yitzhaki (1991), however, show that jackknifing the Gini 

coefficient requires only a few passes through the data.4 We complement these two works on the 

Gini coefficient by providing efficient jackknife procedures for several frequently applied 

inequality indices: the coefficient of variation, the variance of the logarithms, the mean log 

deviation, the Theil index, and the Atkinson index.5 We show that, after having computed some 

basic statistics from the overall sample, it takes a single run through the data to derive all the 

jackknife values of an index from all the subsets. We apply the outlined jackknife procedure to 

micro data from the Luxembourg Income Study. 

Section 2 explains the procedures. Section 3 provides the results from the empirical application. 

Section 4 concludes. Derivations of all the formulas and STATA codes are provided in an 

Appendix.  

	

2	Efficient	jackknife	procedures	for	inequality	indices	

The jackknife offers a conceptually simple way to estimate the precision of a statistic (see the 

pioneering works of Tukey, 1958; Efron, 1982; Efron and Gong, 1983; Wolter, 1985). In the 

context of inequality measurement, we have a random sample of  observations on income, 

, , … ,  and sampling weights, , , … , . Let  denote our measure of 

inequality. Let , , … , , , … ,  denote the jackknife estimate of the same 

measure of inequality for the subset where the th observation has been deleted.  

Following Wolter (1985), the jackknife estimate of the standard error of  is, 

1 				
1

.

, 

                                                            
4 Ogwang (2000) shows that it is also possible to obtain standard errors for the Gini index from OLS regression. 
Giles (2004) extends the regression-based approach to test hypotheses regarding the sensitivity of the Gini 
coefficient to changes in the data using seemingly unrelated regressions.  
5 Karoly (1989) also derives jackknife procedures for calculating the between- and within-group inequality 
components of the variance of the logarithms, the mean log deviation, and the Theil index. 
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with ∑ .6 Computing the jackknife standard error estimate relies on the  values of 

, one jackknife statistic per subset. For large samples the computational burden to derive 

equation (1) seems to be large. However, as we will outline below, for standard inequality indices 

deriving the  values of  requires just a few passes through the data. Hereby, the number of 

passes is independent of the number of sample observations, . 

The procedure is detailed below by means of the Theil index, and the variance of logarithms. The 

general idea of the procedure is to write the jackknife estimates ,…,  as a function of 

statistics from the overall sample (i.e., as a function of , , arithmetic or geometric mean) and a 

subset-specific correction factor that can be derived with a single run through the data. The 

procedure can be adapted to other inequality indices including indices of the generalized entropy 

class, and indices based on the variance or social-welfare functions (e.g. the Atkinson index). 

We will make use of the following notation and definitions: 

1.  denotes the normalized weight, 
∑

 . Accordingly, ∑ .  

2.  denotes the arithmetic mean of income, ∑ . 

3. ∗ denotes the geometric mean of income, ∗ exp 	 	∑ ln 	. The natural 

logarithm of the geometric mean is denoted  ̅ ln ∗ 	 ∑  with ln . 

 
  

                                                            
6 An alternative method is to compute the squared differences between the jackknife statistics and their mean (see, 
for example, Yitzhaki, 1991). 
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2.1 Efficient jackknife procedure for the Theil index 
The Theil index from the sample is,  

2 					
1

ln ln . 

The Theil index for the subset where the th observation has been deleted is,  

3 					
1

ln ln , 

with  denoting the arithmetic mean of income from the subset,  

4 					 . 

The first step is to write  in terms of . Initially, from (3): 

	 5 					
1

ln ln . 

Rewriting equation (2) gives, 

6 					∑ ln ln ,  

and substituting (6) and (4) into (5) gives, 

7 					 	 ln	
ln

. 

Equation (7) reveals that  can be expressed as a function of three statistics from the full 

sample, , ,	and		 , and characteristics of the observation that is left out,  and . Thus, after 

having calculated , ,	and		  for the full sample, to compute all the jackknife statistics 

, … ,   takes a single pass through the data. 
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2.2	Efficient	jackknife	procedure	for	the	variance	of	logarithms	
Applying Bessel’s correction7, the variance of the logarithms from the sample is,  

8 					
1
1
	 ln ∗ 	

1
1
	 ̅  

The variance of the logarithms for the subset where the th observation has been deleted is,  

9 					
1
2
	 ̅ , 

with ̅ 	 , and with 
⁄

 denoting re-weighted normalized 

weights. By means of the re-weighting the average of  over the subset where the th 

observation has been deleted equals unity. So, the analogue of the term  in (8) in (9) is . 

Substituting the definition of  in (9) gives:  

10 					
1

2
	 ̅ 	, 

Initially, from (8): 

11 				
1
1
		 ̅ 	

1
1

̅ .	 

Substituting ̅ ̅  in (11) gives: 

12 				
1
1
		 	

1
̅ 	 	

1
1

̅  

1
1
		 	 ̅ ̅ 	 	

1
1

̅  

Equation 12  can be rewritten as: 
                                                            
7 Bessel’s correction, the division in the variance formula by 1 instead of by , secures unbiasdness. 
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13 				
1
1
		 ̅ 	

2
1

̅ ̅

1
1
		 ̅ 	 	

1
1

̅  

The  -term on the right handside of (12) can be rewritten as  . The  -term 

is zero since 

14 			
2
1

			 ̅ ̅
2	
1

̅ ̅ 0 

The  –term after some algebra becomes,  

15 			
1
1

	 ̅ 	  

1
1

	 ̅ 	
1
1

̅ 	 	 

Substituting (14-15) in (13), the variance of the logarithms for the sample becomes, 

	 16 			
2

1
1
1

̅ 	 	
1

̅ . 

After some algebra, (16) becomes, 

17 				
2

1 1
̅ . 

Solving (17) with respect to  gives the desired expression for the jackknife estimator of the 

variance of the logarithms: 

18 			 	
1

2
1
2

̅  
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Equation (18) is the analogue of the jackknife estimator of the Theil index in equation (7):  

can be expressed as a function of statistics from the full sample ( , ̅ ,	and		 ) and the 

characteristics of the observation that is left out,  and . Thus, after having calculated 

, ̅ ,	and		  for the full sample, computing , … ,   takes a single pass through the 

data. 

 

2.3	Efficient	jackknife	procedure	for	other	inequality	indices	
Similar derivations as those explained in Sections 2.1 and 2.2 can be made for other inequality 

indices. Formulas for an efficient computation of the Atkinson index, θ  (with inequality 

aversion parameter 1 and 2), the mean log deviation, θ , and the coefficient of 

variation, θ , are as follow: 

19 			 1
ln ∗ 	

ln

 

20 			 			1

1

									 

21 		
1

	
ln

ln
ln  

22 		
	 	

1
2

1
2

.

1  

 

Derivations of the formulas can be found in the Appendix. Again, after having calculated some 

basic statistics from the full sample, computing all the jackknife indices takes only a single pass 

through the data. 
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3	Empirical	application	

We have calculated the above inequality indices and their associated jackknife confidence 

intervals for distributions of disposable household incomes in the US and in Germany from the 

Luxembourg Income Study (LIS) database. For 40 countries and several years, the LIS provides 

representative micro-level information on private households’ incomes and their demographics.  

Our computations rely on the LIS household-level datasets. Household disposable income is our 

income concept. Household disposable income is harmonized across countries, covers labor 

earnings, property income, and government transfers in cash minus income and payroll taxes. To 

adjust household incomes for differences in needs, we have deflated household disposable 

income by means of the square root equivalence scale. The square root equivalence scale is the 

number of household members to the power of 0.5. This gives the needs-adjusted equivalent 

income of the household. Household units are weighted by the frequency weights (as provided in 

the data) and the number of household members.  Our weighting procedure accommodates the 

principle of normative individualism that considers any person as important as any other. The so 

derived distribution depicts differences in living standards, captured by differences in equivalent 

incomes, among individuals (Bönke and Schröder, 2012). 

We have removed household observations with missing information or with negative values of 

disposable income. Moreover, to avoid outlier-driven biases of inequality estimates, we use 

trimmed data with the one percent observations with the highest and with the lowest incomes 

being discarded. 

It has taken a few seconds to obtain all the results presented in Table 1. The Table is split in two 

panels. The upper panel provides the results for the US, the lower panel provides the results for 

Germany. In the US, the results cover the period 1991-2010; in Germany, the results cover the 

period 1994-2010. For every country-period combination, the Table provides the point estimates 

of the inequality indices along with their upper and lower bounds of 95 percent confidence 

intervals, 
.
 and  

.
, derived from the jackknife statistics. 

  

Table 1 about here 
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We comment on the US first. An examination of the statistics shows a significant rise of 

inequality over the observation period: the point estimate of the Theil index increases from 0.161 

in 1991 to 0.192 in 2010, and the confidence intervals are clearly distinct: 0.158; 0.165  vs. 

0.189; 0.196 . However, some inter-temporal changes in inequality for this sample are not 

statistically significant (e.g. 1997-2000; 2000-2004; 2004-2007).  

For Germany, we also see a significant rise of inequality over the observation period. This is due 

to a prominent rise of inequality between 2000 and 2004. The inter-temporal comparisons before 

the rise (1994-2000) and after the rise (2004-2007 and 2007-2010) indicate no significant 

changes in inequality. 

Comparing inequality levels in the US and Germany there is significantly more inequality in the 

US. The result holds for all six inequality indices and all the observed points in time.8 

 

4	Conclusion	

This paper has outlined a procedure to obtain jackknife estimates for several inequality indices 

with only a few passes through the data. The number of passes is independent of the number of 

observations: After having computed some statistics from the overall sample, computing all the 

jackknife indices takes only a single pass through the data. Hence, the method provides an 

efficient way to get standard errors of the estimators even if sample size is large.  

We have applied our method using data from the Luxembourg Income Study to evaluate the 

statistical significance of inter-temporal inequality in Germany and the US, and also to evaluate 

cross country differences in inequality levels. 

  	

                                                            
8 We have executed our empirical analysis using the alternative formulation of the standard error introduced in 
footnote 4. It did not change our conclusions since confidence intervals changed very tittle. 



11 
 

References	
Schröder, C., and T. Bönke (2012). Country Inequality Rankings and Conversion Schemes. 

Economics: The Open-Access, Open-Assessment E-Journal, Vol. 6, 2012-28. 

Efron, B. (1982): The Jackknife, the Bootstrap and Other Resampling Plans, Society for 

Industrial and Applied Mathematics, Philadelphia PA. 

Efron, B., and G. Gong (1983): A Leisurely Look at the Bootstrap, the Jackknife, and Cross-

Validation, The American Statistician, 37, 36-48. 

Giles, D. (2004): Calculating a Standard Error for the Gini Coefficient: Some Further Results, 

Oxford Bulletin of Economics and Statistics, 66, 425-433. 

Karagiannis, E., and M. Kovacevic (2000): Practitioners Corner - A Method to Calculate the 

Jackknife Variance Estimator for the Gini Coefficient, Oxford Bulletin of Economics and 

Statistics, 62, 199-122.  

Karoly, L.A. (1988): Computing Standard Errors for Measures of Inequality using the Jackknife, 

unpublished manuscript. 

Karoly, L.A. (1992): Changes in the Distribution of Individual Earnings in the United States: 

1967-1986, The Review of Economics and Statistics, 74, 107-115. 

Luxembourg Income Study (LIS) Database, http://www.lisdatacenter.org (Germany and US; 

1991-2010). Luxembourg: LIS. 

Ogwang, T. (2000): A Convenient Method of Computing the Gini Index and its Standard Error, 

Oxford Bulletin of Economics and Statistics, 62, 123-29. 

Tukey, J. W. (1958): Bias and confidence in not quite large samples. Annals of Mathematical 

Statisics, 29, 614. 

Wolter, K. (1985): Introduction to Variance Estimation, Springer, New York. 

Yitzhaki, S. (1991): Calculating Jackknife Variance Estimators for Parameters of the Gini 

Method, Journal of Business and Economic Statistics, 9, 235-239. 

 



12 
 

Appendix	
 

A.1	Derivation	of	jackknife	formulas			
 

Mean log deviation (Entropy 0) 

1 					
1

ln
1

ln ln  

2 				
1

	
ln ln  

From 2 : 

3 				
1

	
ln ln

ln
ln  

4 				
1

	
ln

ln
ln  

Substituting ln 	∑ ln  from 1  gives: 

5 				
1

	
	 ln

ln
ln 	 

Substituting  by 	  gives:  

6 				
	

ln ln   

  



13 
 

Atkinson Index  

The general form of the Atkinson index is, 1 ∑ . Below we derive 

the jackknife formulas for two prominent case of the inequality aversion parameter, .  

Inequality aversion parameter  

1 				 1
∗

			 			1	–
exp

1
	∑ 	ln

							 

2 				 1
exp

1
	∑ 	ln

	 

Expansion of the term in brackets in the numerator with   , and substitution of 

 by 	  gives: 

3 				 1
	 1 ∑ 	ln

ln

	 

Substitution of the term  ∑ 	ln 	(log of the geometric mean of income from the full 

sample) by  ln ∗  gives:  

4 				 1
ln ∗ 	

ln

 

Inequality aversion parameter  

1 				 1
∑

				 

2 				 1
∑
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Expansion of the denominator with   and rewriting the sum gives: 

3 				 1
∑

								 

4 				 1
∑

 

From 1
∑

	 it follows that  ∑ , and replacement of the sum in the 

denominator gives: 

5 				 			1 			

1

 

Finally, substitution of  by 	  gives: 

6 				 			1

1
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Variance and Coefficient of Variation 

1 				
1
1

 

2 				
1

2
 

Rewriting of   gives: 

3 				
1
1

	
1
1

 

Substituting    and reorganizing in analogy to the variance of the 

logarithms gives: 

4 				 	
1
1

 

5 				
1
1

2
1

 

6 				 	
2
1

			 	

2	
1

0 

7 				
1
1
		  

Analogously to we can rewrite 7 	as:  

8 				
1
1

	  

Substituting 5 , 6 , and 8  in 4 	gives: 
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9 				
2

1
1
1

	
1

 

Analogously to we can rewrite 9 	as:  

9 				
2

1 1
 

Solving 9  for  gives: 

	 10 				 	
1

2
1
2

 

 

The coefficient of variation is defined as,  

1 				
.

 

Hence, 	

2 				

.

 

Substitution of 	 	  and of 

 in 2 				gives, 

3 				
	 	

1
2

1
2

.

1  
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A.2	STATA	code	for	Luxembourg	Income	Study	
 

#delimit	;	
	
***	loop	over	countries;		
foreach	file	in	$us91h	$us97h	$us00h	$us04h	$us07h	$us10h	$de94h	$de00h	$de04h	$de07h	$de10h	{;	
	 *	Variables	of	interest;	
	 local	vars	"dname	did	hwgt	dhi	nhhmem";	
	 *	open	data;	
	 use	`vars'	using	`file',	clear;	
	 *********************************************;	
	 *	Data	preparation	and	auxiliary	statistics	*;	
	 *********************************************;	
	 qui	rename	hwgt	w;	
	 qui	rename	dhi	y;	
	 *	drop	negative	or	zero	yomes	(because	of	log);	
	 qui	drop	if	y==.	|	y<=0;	
	 *	trimming	top	bottom	1percent	of	unweighted	observations;	
	 xtile	centiles=y,	nq(100);	
	 drop	if	centiles	==1	|	centiles==100;	
	 *	drop	missings;	
	 qui	drop	if	nhhmem==.	|	w==.;	
	 *	weight	by	frequency	weights	and	number	of	household	members;	
	 qui	replace	w=w*nhhmem;	
	 *	compute	equivalent	yome	using	square	root	scale;	
	 qui	replace	y=y/(nhhmem)^(0.5);	
	 qui	gen	logy=log(y);	
	 *	Normalization	of	the	weights;	
	 qui	sum	w;	
	 qui	replace	w=w/r(mean);	
	 *	Arithmetic	mean	(weighted);	
	 qui	sum	y	[w=w];	
	 qui	scalar	sc_mu=r(mean);	
	 *	geometric	mean	yome	(weighted);		
	 qui	gen	help=logy*w;	
	 qui	sum	help;	
	 qui	scalar	sc_gmu=exp(r(mean));	
	 qui	drop	help;	
	 *	Sample	size	(weighted);	
	 qui	scalar	sc_N=r(N);	
	 *********************************************;	
	 ***	Inequality	indices	from	overall	sample	**;	
	 *********************************************;	
	 *Atkinson	Index	1:	stored	in	scalar	sc_A1	***;	
	 qui	gen	summand=w*ln(y);	
	 qui	sum	summand;	
	 qui	scalar	sc_gmu=exp(r(sum)/sc_N);	
	 qui	scalar	sc_A1=1‐sc_gmu/sc_mu;	
	 qui	drop	summand;	
	 *Atkinson	Index	2:	stored	in	scalar	sc_A2	***;	
	 qui	gen	summand=w*(y/sc_mu)^(1‐2);	
	 qui	sum	summand;	
	 qui	scalar	sc_A2=1‐(r(sum)/sc_N)^(1/(1‐2));	
	 qui	drop	summand;	
	 *Mean	log	deviation:	stored	in	scalar	sc_MLD*;	
	 qui	gen	summand=w*ln(y);	
	 qui	sum	summand;	
	 qui	scalar	sc_MLD=‐r(sum)/(sc_N)+ln(sc_mu);	
	 qui	drop	summand;	 	
	 *Theil	index:	stored	in	scalar	sc_T*;	
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	 qui	gen	summand=y/sc_mu*ln(y)*w;	
	 qui	sum	summand;	
	 qui	scalar	sc_T=r(mean)‐ln(sc_mu);	
	 qui	drop	summand;	
	 *Variance	of	log	yomes:	stored	in	scalar	sc_V*;	
	 qui	gen	summands=(logy‐log(sc_gmu))^2*w;	
	 qui	sum	summands;	
	 qui	scalar	sc_VL=r(sum)/(sc_N‐1);	
	 qui	drop	summands;	
	 *Variance	and	coeff	of	var:	stored	in	scalar	sc_V	and	sc_CV*;	
	 qui	gen	summands=(y‐sc_mu)^2*w;	
	 qui	sum	summands;	
	 qui	scalar	sc_V=[r(sum)/(sc_N‐1)];	
	 qui	scalar	sc_CV=sc_V^(0.5)/sc_mu;	
	 qui	drop	summands;	
	
	 *********************************************;	
	 ****	Inequality	indices	from	JK	samples	*****;	
	 *********************************************;	
	 *Atkinson	Index	1:	stored	in	variable	jk_A1	***;	
	 qui	gen	jk_A1=1‐exp(sc_N/(sc_N‐w)*ln(sc_gmu)‐ln(y)*w/(sc_N‐w))/((sc_N*sc_mu‐w*y)/(sc_N‐w));	
	 *Atkinson	Index	2:	stored	in	variable	jk_A2	***;	
	 qui	 gen	 jk_A2=1‐(sc_N‐w)/[(sc_N*sc_mu‐w*y)/(sc_mu*(sc_N‐w))*sc_N/(1‐sc_A2)‐w*(sc_N*sc_mu‐
w*y)/(y*(sc_N‐w))];	
	 *Mean	log	deviation:	stored	in	variable	jk_MLD	***;	 	
	 qui	gen	jk_MLD=sc_N/((sc_N‐w))*(sc_MLD‐ln(sc_mu))+w*ln(y)/(sc_N‐w)+ln((sc_N*sc_mu‐y*w)/(sc_N‐w));	
	 *Theil	index:	stored	in	variable	jk_T	***;	 	
	 qui	 gen	 jk_T=(sc_N*sc_mu)/((sc_N*sc_mu‐w*y))*(sc_T+ln(sc_mu))‐(w*y*ln(y))/((sc_N*sc_mu‐w*y))‐
ln((sc_N*sc_mu‐w*y)/(sc_N‐w));	
	 *Variance	of	logs:	stored	in	variable	jk_VL	***;	 	
	 qui	 gen	 jk_VL=(sc_N‐1)^2/((sc_N‐2)*(sc_N‐w))*sc_VL‐sc_N*w*(sc_N‐1)/((sc_N‐w)^2*(sc_N‐2))*(log(sc_gmu)‐
logy)^2;	
	 *Variance:	stored	in	variable	jk_V	***;		
	 qui	gen	jk_V=(sc_N‐1)^2/((sc_N‐2)*(sc_N‐w))*sc_V‐sc_N*w*(sc_N‐1)/[(sc_N‐2)*(sc_N‐w)^2]*(y‐sc_mu)^2;	
	 *Coefficient	of	var:	stored	in	variable	jk_V	***;	 	
	 qui	gen	jk_CV=(jk_V)^(0.5)/((sc_N*sc_mu‐y*w)/(sc_N‐w));	
	 	
	 **********	95%	normal	confidence	interval	**********;	
	 ****	using	normalized	weights	as	in	WOLTER	(1985)	to	compute	variance;	
	 local	vars	"A1	A2	MLD	T	VL	CV";	
	 *	loop	over	inequality	indices;	
	 foreach	var	of	local	vars	{;	
	 	 qui	gen	jk_V_`var'=((sc_N‐1)/(sc_N)*w*(sc_`var'‐jk_`var')^2);	
	 	 qui	sum	jk_V_`var';	
	 	 qui	scalar	sc_V_`var'=r(sum);	
	 	 qui	scalar	sc_SD_`var'=sc_V_`var'^(0.5);	
	 	 qui	scalar	sc_lo_`var'	=sc_`var'‐1.96*sc_SD_`var';	
	 	 qui	scalar	sc_hi_`var'	=sc_`var'+1.96*sc_SD_`var';	
	 	 disp	dname	"	`var'	"	"	lower_bound	"	sc_lo_`var'	"	Point	estimate	"	sc_`var'	"	upper_bound	"	sc_hi_`var'	;	
	 };	 	
};	
******;	



Figure 1. Computer time and sample size 

 

 

Note. Own computations. The jackknife has been implemented using STATA’s software package inequal7.ado on  
a computer with characteristics: 64-bit system; 8 GB ram; core(TM)2 Duo CPU;  3GHz. See also footnotes 2 and 3.  
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Table 1. Inequality indices 

  
Atkinson 

1
Atkinson 

2
Mean log deviation Theil index Variance of logs Coeff. of variation 

 
Year           

US 1991 0.162 0.166 0.169 0.329 0.337 0.345 0.177 0.181 0.186 0.158 0.161 0.165 0.396 0.408 0.419 0.574 0.581 0.587

 
1997 0.177 0.181 0.185 0.348 0.357 0.366 0.195 0.199 0.204 0.180 0.184 0.189 0.422 0.435 0.447 0.637 0.646 0.654

 
2000 0.173 0.177 0.180 0.340 0.348 0.356 0.190 0.194 0.199 0.177 0.181 0.185 0.410 0.421 0.432 0.633 0.643 0.653

 
2004 0.179 0.183 0.186 0.361 0.371 0.380 0.197 0.202 0.206 0.178 0.182 0.185 0.439 0.452 0.464 0.625 0.633 0.640

 
2007 0.185 0.188 0.191 0.363 0.370 0.377 0.204 0.208 0.212 0.188 0.192 0.196 0.445 0.456 0.466 0.653 0.661 0.669

 
2010 0.193 0.197 0.201 0.402 0.411 0.421 0.215 0.219 0.224 0.189 0.192 0.196 0.494 0.508 0.522 0.639 0.646 0.652

DE 1994 0.088 0.095 0.102 0.175 0.188 0.200 0.093 0.100 0.107 0.090 0.097 0.104 0.191 0.207 0.222 0.437 0.456 0.475

 
2000 0.088 0.093 0.098 0.174 0.185 0.196 0.092 0.098 0.103 0.090 0.095 0.099 0.190 0.203 0.216 0.439 0.451 0.463

 
2004 0.098 0.106 0.114 0.184 0.203 0.222 0.103 0.112 0.121 0.103 0.111 0.119 0.204 0.226 0.248 0.480 0.500 0.519

 
2007 0.102 0.111 0.120 0.193 0.210 0.226 0.107 0.117 0.127 0.108 0.118 0.129 0.213 0.234 0.254 0.493 0.522 0.551

 
2010 0.103 0.110 0.117 0.198 0.212 0.225 0.109 0.116 0.124 0.107 0.114 0.122 0.221 0.238 0.254 0.482 0.504 0.525

Note. Data from Luxembourg Income Study.  
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