
LIS 
Working Paper Series 

 

 
Luxembourg Income Study (LIS), asbl 

 
 
 
 

 
 

 
 
 
 
 

No. 575 
 

The Relationship between the Equivalence Scale 
and the Inequality Index and its Impact on the 

Measurement of Income Inequality 
 

Masato Okamoto 
 

March 2012 
 
 



THE RELATIONSHIP BETWEEN THE EQUIVALENCE SCALE AND THE 

INEQUALITY INDEX AND ITS IMPACT ON THE MEASUREMENT OF INCOME 

INEQUALITY 

 

Masato Okamoto 

The Ministry of Internal Affairs and Communications 

19-1 Wakamtsu-cho, Shinjuku-ku, Tokyo 112-0002 PFC02714@nifty.com 

 

The paper discusses the ∪-shaped relationship between the equivalence scale ݊க and the Gini index instead of considering the equivalence 

scale’s relationship to the generalised entropy measures, which was studied by Coulter, et al. (1992). An end-point condition is given for the ∪-shaped relationship, which corresponds to a condition for that of the generalised entropy measures. Additionally, using a mixture of 

log-normal distributions approach, five factors are shown to be required for a convex relationship between size elasticity ε and the Gini 

index. Empirically, income distributions satisfy those factors. Thus, the end-point condition essentially determines the shape of the 

relationship. 

 

 

1. Objective 

Coulter et al. (1992) studied how index values such as the generalised entropy inequality measures and the 

Foster-Greer-Thorbecke (FGT) poverty indices relate to parameter ߝ of an equivalence scale specification of 

the form ߥ(݊,  monotonically ߥ where ݊ denotes the number of household members, and the function ,(ߝ

increases with n and a scalar parameter ߝ. They derived an approximate condition for the relationship (called 

the ‘e-i curve’ hereafter) to be ∪-shaped and asserted that the approximate condition is usually satisfied. 

However, their empirical study only used data from the UK Family Expenditure Survey, and they were unable to 

analyse the relationship to the Gini index, the most popular inequality index, using the method they employed. 

They supposed, however, that there is a ∪-shaped relationship between ߝ and the Gini index as long as 

changes in the rankings induced by changes in ߝ are relatively small.  

They also discussed the impact of a ∪-shaped e-i curve on measurement practices. The minimum of the ∪-shaped e-i curve is reached at approximately ߝ = 0.6 in the UK when using ν(݊, (ߝ = ݊க, a scale class 

proposed by Buhman et al. (1988). As the official scale derived by the McClements method corresponds to ߝ ≒ 0.6, Coulter et al. suggested that the official scale provides lower estimates of the extents of inequality and 

poverty than do other scales. Banks and Johnson (1994) argued that the results of Coulter et al. are dependent on 

particular years and a particular equivalence scale specification and are not robust to other choices of years and 

equivalence scale specifications.1  

This study has three objectives. The first is to derive the conditions for a ∪-shaped Gini index e-i curve when 

using ν(݊, (ߝ = ݊க. The next is to observe the actual e-i curves of major inequality indices including the 

generalised entropy measures for many countries to explore the generality of the ∪-shaped relationship. The last 

                                                  
1 Jenkins and Cowell (1994) refuted the argument of Banks and Johnson. Nevertheless, the argument does not appear to be completely off 
the point, regardless of whether Banks and Johnson properly comprehended the objective of the empirical illustration provided by Coulter et 
al. A detailed explanation is given in Section 4. 



objective is to provide an illustrative example in which the ∪-shaped relationship has significant impacts on the 

measurement of income inequality for a significant period, and similar effects are observed even if a more 

general specification of the equivalence scales is used. 

The subsequent sections are organised as follows. In Section 2, regarding the equivalent scale specification ν(݊, (ߝ = ݊க , an end-point condition for the ∪-shaped relationship of parameter ߝ  to the Gini index is 

presented instead of those of the generalised entropy measures for which Coulter et al. (1992) derived an 

approximate condition. It is also shown that, unlike those of the generalised entropy measures, the Gini index e-i 

curve may diverge from a ∪-shape depending on the income distributions within groups of equal household size, 

even if the end-point condition is satisfied. To address this issue, five factors necessary for the convexity of the 

e-i curve are specified by using a set of log-normal distributions in which each within-group income distribution 

is approximated with an appropriate log-normal distribution. In Section 3, using recent disposable income data 

from 34 countries contained in the Luxembourg Income Study (LIS) database, the e-i curves of the Gini index 

are shown to be convex in all 34 countries, meaning that practically the end-point condition determines whether 

the curve is ∪-shaped. The condition is not satisfied or comes close to not being satisfied for several 

low-income countries. The e-i curves of the Theil index (Theil) and the Squared Coefficient of Variation (SCV) 

are also investigated and are found to differ from a ∪-shape for several low-income countries, although the 

Coulter et al.’s (1992) approximate condition hold. Regarding SCV in particular, these negative cases also 

emerge for some high-income countries, leading to a rejection of the generality of the ∪-shaped relationship 

even for high-income countries.2 Section 4 is devoted to an example that shows the impact of the ∪-shaped e-i 

curve on the measurement of income inequality in Japan, where equivalent scales have changed substantially for 

the last two decades. The scale of Buhman et al. with a fixed parameter ߝ = 0.5, which the OECD uses for 

international comparisons, is shown to significantly underestimate the recent rise in income inequality among 

households with two or more persons compared to the current equivalence scales derived from several 

procedures because of the ∪-shaped Gini index e-i curve. The significance of this result is made more robust 

because a similar tendency is observed when using a more general specification of the equivalence scales. 

Section 5 concludes the discussion and provides final remarks. 

 

2. Conditions for a ∪-Shaped Relationship between Size elasticity and the Gini Index 

2.1. End-Point Condition and Counter-Examples 

Let Γ denote a group consisting of all n-person households. Its population share, average household income, 

and cumulative distribution function for household income relative to the within-group average are denoted as , ݕ, and ܨ, respectively. In this paper, the equivalised income of each household member in a n-person 

household that earns an amount ݕ is expressed as ݕ ݊ఌ⁄ , where 0 ≤ ߝ ≤ 1. Parameter ߝ is called ‘size 

elasticity’ hereafter. The overall average ߤ(ఌ)  and overall cumulative distribution function 	ܨ(ఌ)  of the 

equivalised incomes are expressed as follows: ߤ(ఌ) = ݊ఌݕ , (ݔ)(ఌ)ܨ =ܨ ൬݊ఌݕ ൰ݔ . 
                                                  
2 Note that Coulter et al. (1992) did not explicitly discuss the applicability of their approximate condition and the generality of the ∪-shaped relationship for countries other than the UK. 



The Gini index ܩ(ఌ) of the overall equivalised income distribution is expressed as follows: ܩ(ఌ) = ݔ|ඵ(ఌ)ߤ12 − (ݕ)(ఌ)ܨ݀(ݔ)(ఌ)ܨ݀|ݕ = (ఌ)ߤ1 නܨ(ఌ)(ݔ)൫1 −  .ݔ൯݀(ݔ)(ఌ)ܨ
For simplicity, ܨ is assumed to be continuously differentiable with the density function ܨᇱ for any group Γ, 

hereafter. The derivative of ܩ(ఌ) with respect to size elasticity ߝ is expressed as follows: ߲ܩ(ఌ)߲ߝ =ݏ(ఌ)൫log ݊ − log ݊തതതതതത൯නቆ1 − (ఌ)ܨ2 ቀݕ݊ఌ ቁቇݖ ݖ݀(ݖ)ᇱܨݖ = COV ൫log ݊ , (ఌ)൯, (1)ܦ

where ݏ(ఌ) ≔  ௬ ഄ⁄ఓ(ഄ) : the share of Γ in terms of equivalised income, log ݊തതതതതത ≔ ∑ ݊	(ఌ)logݏ : the average of 

log	݊  with weight ݏ(ఌ) (the ݏ(ఌ)-weighted average of the variable X is denoted തܺ hereafter), and ܦ(ఌ) ≕ ൬1 − (ఌ)ܨ2 ቀ௬ഄ ቁ൰ݖ ݖ݀(ݖ)ᇱܨݖ . Notation COV(∙,∙)  on the right-hand side of the equation expresses the 

covariance with weight ݏ(ఌ). Using the overlap index (Yitzhaki and Lerman, 1991) of the equivalised income 

distribution within Γ  over the overall equivalised income distribution 

ܱ(ఌ) ≔ (ݔ)(ఌ)ܨ൫2 − 1/2൯ܨ݀ݔ ቀ௬ ቁݔ 2 ቀܨ ቀ௬ ቁݔ − 1/2ቁ ܨ݀ݔ ቀ௬ ቁൗݔ  and the Gini index of the 

within-group (equivalised) income distribution ܩ = 2 ቀܨ ቀ௬ ቁݔ − ଵଶቁ ܨ݀ݔ ቀ௬ ቁݔ ௬ഄൗ = 2 ቀܨ(ݔ) −ଵଶቁ ߝ߲(ఌ)ܩ߲ :in (1) can be expressed as follows (ఌ)ܩ the derivative of ,(ݔ)ܨ݀ݔ = −COV ൫log ݊ , ܱ(ఌ)ܩ൯ 
because of the equality ܦ(ఌ) = − ܱ(ఌ)ܩ. 

When ܨs are identical to any other (the Identical Income Distributions condition, the IID), if ݕଵ < ௬మଶഄ <⋯ < ௬ഄ < ⋯ , then the inequalities ܦଵ > ଶܦ > ⋯ > ܦ > ⋯  and ߲ܩ(ఌ) ⁄ߝ߲ = COV൫log ݊ , (க)൯ܦ < 0  hold 

due to the increasing-monotonicity of ܨ(ఌ). In addition to the IID condition, if ݕ is proportional to ݊ఌబ for 

some ߝ , where 0 < ߝ < 1, that is, ݕ ∝ ݊கబ  or log ݕ = ܽ + ߝ log ݊ for some ܽ  (the Log-Linearity 

condition, the LL), the inequality ߲ܩ(ఌ) ⁄ߝ߲ < 0 holds if ߝ < (ఌ)ܩ߲ , andߝ ⁄ߝ߲ > 0 holds if ߝ >  ,. Thusߝ

the e-i curve of ܩ(ఌ) is ∪-shaped with the minimum at ߝ. In particular, at the end points	ߝ = 0, 1, the 

following inequalities are satisfied: COV ൫log ݊ , ()൯ܦ < 0, COV ൫log ݊ , (ଵ)൯ܦ > 0. (2)

The ∪-shaped e-i relationship under the IID and LL conditions is made intuitive by the following subgroup 

decomposition of the Gini index (Okamoto, 2009): ܩ(ఌ) =ݏ(க)ܩ + (ఌ)ߤ1   න൭ܨ ൬݊ఌݕ ൰ݔ − ܨ ൬݉ఌݕ ൰൱ଶݔ =ழݔ݀ ଵܩ + (ఌ)ߤ1  (ఌ)ݏ නቆܨଵ(ݖ) − ଵܨ ൬ቀ݉݊ቁఌିఌబ ൰ቇଶݖ ழݖ݀ . 
In the above decomposition, the first term, which represents within-group inequality, is independent of ߝ, and 

the second term, which represents between-group inequality, is equal to zero if ߝ =  . and positive otherwiseߝ



The further ߝ is from ߝ, the larger the integrand in the second term is. Although the dependencies of ݏ(ఌ) and ߤ(ఌ)on ߝ need to be taken into account to strictly prove the ∪-shaped relationship, the above decomposition is 

expected to be helpful for an intuitive understanding of the ∪-shaped relationship. 

In general, if the e-i curve is ∪-shaped, then the end-point condition (2) holds. The condition corresponds to 

the following approximate condition for the ∪-shaped e-i curve of the generalised entropy measures and the 

FGT poverty measures derived by Coulter et al. (1992): COV(log ݊ , (ݕ > 0, COV(log ݊ , ݕ ݊⁄ ) < 0. (2)΄

The covariance in (2)΄ is calculated using the population weight . Condition (2) and (2)΄ are similar to each 

other and are generally considered to agree but are not equivalent. Illustrative examples for this inconsistency 

are presented below, and an empirical example is given in Section 3. 

In the case of the Gini index, the e-i curve may be non-∪-shaped when the dispersions of the within-group 

income distributions are very small, when the within-group income distributions differ from each other 

substantially, when pairs of log ݊ and log   deviate substantially from a linear-relationship, and when theݕ

range of household sizes is very wide, as shown in the following examples. 

 

EXAMPLE 1. Suppose the universe consists of one-person, two-person and four-person households. Group Γଵ，Γଶ，
and Γସ have population shares of 0.1, 0.8, and 0.1, and incomes of 1, 2.ଽଽ ≒ 1.986, and 40.5=2 on average, 

respectively. In addition, the within-group income distributions follow log-normal distributions with ߪ = 0.01. 

Thus, the IID condition is satisfied, but the LL condition is not satisfied. In this case, the Gini index e-i curve is 

non-∪-shaped even though the end-point condition holds, as shown in the upper-left panel of Figure 1.  

EXAMPLE 2. However, if the within-group dispersion is made larger such as ߪ = 0.09, then the e-i curve 

becomes ∪-shaped, as shown in the upper-right panel.  

EXAMPLE 3. Even if the dispersion parameter ߪ remains at 0.01, by making the pairs of log ݊ and log  ݕ

closer to having a linear-relationship such that the average income of Γଶ is changed from 2.ଽଽ to 2.ହହ ≒1.464, the e-i curve becomes ∪-shaped, as shown in the middle-left panel.  

EXAMPLE 4. In cases where the IID condition is not satisfied, the e-i curve may be non-∪-shaped, even if the 

average within-group dispersion is not small. For example, let the dispersion parameters for Γଵ，Γଶ，Γସ be ߪଵ = ଶߪ ,0.01 = σସ = 0.089/0.9 ≒ 0.099, respectively, in Example 1; then, the e-i curve has two local minima 

at ߝ ≒ 0.5 and 	0.77, as shown in the middle-right panel, although the average dispersion (with population 

weights) is 0.09, and the end-point condition is satisfied.  

EXAMPLE 5. The lower-left panel shows the e-i curve after the average incomes of the three groups in Example 2 

are changed to 1, 20.ଽଽ ≒ 19.410, and 40.଼ ≒ 19.555, respectively. The minimum point of the e-i curve 

approaches zero, but the curve is still ∪-shaped. 

EXAMPLE 6. A wider range of household sizes may also cause singularity. In Example 5, if the household sizes of 

the two non-single household groups are changed from 2, 4 to 2ହ = 32, 4ହ = 1024, respectively, then, as 

shown in the lower-right panel, the e-i curve becomes non-∪-shaped, although the end-point condition holds. 

EXAMPLE 7. If the within-group income averages are replaced by those in Example 6 divided by the square roots 

of the household sizes, then the e-i curve becomes ∪-shaped (this chart is omitted). This example indicates the 



‘slope’ of the relationship between log ݊ and log  (e.g., the slope when logݕ  is regressed on logݕ ݊) may 

affect the shape of the e-i curve. 

 

 

Fig. 1. Examples e-i curves of the Gini Index 

 

In a sense, the actual income distributions are sufficiently close to the IID and LL conditions, with a slight 

relaxation of the LL condition to allow for the cases ߝ ≤ 0 and ߝ ≥ 1, as shown in the subsequent sections.  

 

2.2. Conditions for a Convex Relationship between Size elasticity and Gini Index 

2.2.1. A mixture of log-normal distributions approach 

In the above-mentioned examples, the e-i curves of the Mean Logarithmic Deviation (MLD), Theil, and SCV 

would be ∪-shaped in Examples 1 – 4, whereas the MLD curves would be non-∪-shaped in Examples 5 and 7, 

and the Theil and SCV curves would be non-∪-shaped in Example 6. As condition (2)΄ does not hold in 

Examples 5 and 7, condition (2)΄ is only consistent with a ∪-shaped e-i curve in the case of MLD. With respect 

to the Gini index, the e-i curve is necessary to test whether there is a singularity due to the within-group income 
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distributions, as shown in Examples 1 – 4. However, as it is difficult to clarify and test additional factors for a ∪-shaped e-i curve analytically without specifying the shape of the income distribution, let the within-group 

income distributions be approximated by log-normal distributions with the same averages and dispersions. By 

this approximation, the overall income distribution is replaced by the mixture of log-normal distributions (MLN). 

Empirically, the MLN approach yields sufficiently accurate approximations, as shown in Section 3.  

When the relative income within group Γ follows ߪ−)ܰܮଶ 2⁄ , (ݔ)ܨ ଶ), its CDF isߪ = Φቀ୪୭௫ିఙమ ଶ⁄ఙ ቁ, 

and the derivative of the Gini index e-i curve is expressed as follows: ߲ܩ(ఌ)߲ߝ = −2ݏ(ఌ)൫log ݊ − log݊തതതതതത൯නܨ൫ܽ(ఌ) ݖ݀(ݖ)ᇱܨݖ൯ݖ = −2ݏ(ఌ)൫log ݊ − log ݊തതതതതത൯Φ(ఌ), , (3)

where ܽ(ఌ) ≔ ഄ௬ ௬ഄ , and Φ(ఌ) ≔ Φቀ୪୭(௬ ௬⁄ )ାఌ ୪୭( ⁄ )ାఙమ√ଶఙ ቁ , (Φ(∙)  denotes the CDF of the standard 

normal distribution, and 	ߪଶ := ଶߪ) + (ଶߪ 2⁄ ). The second-order derivative of the e-i curve is expressed as 

follows: ߲ଶܩ(ఌ)߲ߝଶ = 2ݏ(ఌ) ቂ൫log ݊ − log݊തതതതതത൯ଶ − ൫log ݊ − log݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതቃΦ, − 2ݏ(ఌ)൫log ݊ − log ݊തതതതതത൯߶ log(݉ ݊⁄ =,ߪ2√( 2ݏ(ఌ) ቂ൫log ݊ − log ݊തതതതതത൯ଶ − ൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതቃ ൫Φ − Φ෩൯,+ ധߪ2√ ݏ(ఌ) log ݊݉ ൫log ݊ − log ݊തതതതതത൯൫߶ − ߶෨൯,+ √2ݏ(ఌ) log ݊݉ ൫log ݊ − log ݊തതതതതത൯൫߶ − ߶෨൯ ൬ ߪ1 − +ധ൰,ߪ1 √2߶തݏ(ఌ) log ݊݉ ൫log ݊ − log ݊തതതതതത൯ ൬ ߪ1 − ധ൰,ߪ1 + ധߪ2√ ߶෨ݏ(ఌ)൫log ݊ − log ݊തതതതതത൯ଶ , 

(4)

where ߶ ≔ ߶ ቀ୪୭(௬ ௬⁄ )ାఌ ୪୭( ⁄ )ାఙమ√ଶఙ ቁ  (߶(∙)  denotes the density function of the standard normal 

distribution), Φ෩ ≔ ∑ Φ,(ఌ)ݏ , ߶෨ ≔ ∑ ߶,(ఌ)ݏ , and ߪധ ≔ ଵ∑ ௦(ഄ) ఙൗ, . Using the following 

notation for covariance and variance COV,(ܺ, ܻ) = ∑ ൫ܺ(ఌ)ݏ − ܺ෪ ൯൫ ܻ − ܻ෪ ൯, , and VAR(ܺ) = ∑ (ఌ)(ܺݏ − തܺ)ଶ = (ܺ − തܺ)ଶതതതതതതതതതതതതത (ܺ෪ ≔ ∑ ܺ,(ఌ)ݏ , and തܺ = ∑ (ఌ)ܺݏ ), the second-order 

derivative in (4) is expressed as follows: 



߲ଶܩ(ఌ)߲ߝଶ = 2COV, ቀ൫log ݊ − log݊തതതതതത൯ଶ,Φቁ + ധߪ2√ COV, ቀlog ݊݉ ൫log ݊ − log݊തതതതതത൯, ߶ቁ
+ √2COV, ൬log ݊݉ ൫log ݊ − log ݊തതതതതത൯ ൬ ߪ1 − ധ൰ߪ1 , ߶൰
+ √2߶෨ COV, ൬log ݊݉ ൫log ݊ − log ݊തതതതതത൯, ൰ߪ1 + ധߪ2√ ߶෨ VAR (log ݊). 

(4)΄

If ߲ଶܩ(ఌ) ⁄ଶߝ߲ > 0 for 0 ≤ ߝ∀ ≤ 1, then the e-i curve is convex at any possible size elasticity. Under 

convexity, the end-point condition (2) is a necessary and sufficient condition for a ∪-shaped e-i curve. 

The first, second, and third terms in formula (4)΄ are affected by deviations from the LL condition via 

fluctuation among Φ, ߶ and their interrelations with log ݊. The first trough fourth terms are affected by 

deviations from the IID condition via fluctuation among ߪ, Φ, and ߶ and their interrelations with log ݊. Only the fifth term is independent of those fluctuations. As formula (4)΄ does not allow the contributions 

of individual factors to be distinguished, it will next be approximated to derive factor decomposition. 

 

2.2.2. Type I approximation 

By applying the linear approximations Φ ≒ Φ෩ + ߶ ቀΦିଵ൫Φ෩൯ቁ ݍ) − ෦ݍ ) , and ߶ ≒ ߶෨ൣ1 − ൫ݍଶ − ଶ෪ݍ ൯ 2⁄ ൧ , where ݍ ≔ ୪୭(௬ ௬⁄ )ାఌ ୪୭( ⁄ )ାఙమ√ଶఙ ෦ݍ , ≔ ∑ ,ݍ(ఌ)ݏ , and ݍଶ෪ ≔ ∑ ଶ,ݍ(ఌ)ݏ , an approximation (called the type I approximation hereafter) of formula (4)΄ is derived 

as follows: ߲ଶܩ(ఌ)߲ߝଶ ≒ √2߶ ቀΦିଵ൫Φ෩൯ቁCOV, ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ቁݍ − ധߪ2√1 ߶෨ COV, ቀlog ݊݉ ൫log ݊ − log ݊തതതതതത൯, ଶݍ ቁ
− 1√2߶෨ COV, ൬log ݊݉ ൫log ݊ − log ݊തതതതതത൯ ൬ ߪ1 − ധ൰ߪ1 , ଶݍ ൰
+ √2߶෨ COV, ൬log ݊݉ ൫log ݊ − log ݊തതതതതത൯, ൰ߪ1 + ധߪ2√ ߶෨ VAR (log ݊) = ଵܫ + ଶܫ + ଷܫ + ସܫ + ,ହܫ

(5)

where ܫଵ through ܫହ on the right-hand side denote the first through fifth terms of the type I approximation, 

respectively. Similar notations are used for other approximations. The range of ݍ must be sufficiently 

narrow for approximation (5) to be sufficiently accurate. As mentioned in Section 3, in the 

lowest-income-inequality countries, such as some northern European countries, ߪ in the denominator of ݍ is so small that the accuracy of approximation (5) is substantially reduced. Nevertheless, approximation (5) 

remains consistent with formula (4) in terms of sign, that is, the approximation is positive when ߲ଶܩ(ఌ) ⁄ଶߝ߲ >0 for the recent income distributions in all of the countries studied. Thus, the approximation is valid for the 

verification of convexity. 

The first term ܫଵ is further decomposed as follows: 



ଵܫ = √2߶ ቀΦିଵ൫Φ෩൯ቁ ߝ − ധߪෝߝ COV, ቀ൫log ݊ − log ݊തതതതതത൯ଶ, log ቀ݉݊ቁቁ
+ ߝ) − ෝߝ ) COV, ൭൫log ݊ − log ݊തതതതതത൯ଶ, log ቀ݉݊ቁ ൬ ߪ1 − ധ൰൱ߪ1
+ COV, ቆ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ − ߰ߪ ቇ + COV, ቀ൫log ݊ − log ݊തതതതതത൯ଶ, =ቁ൩ߪ ଵଵܫ + ଵଶܫ + ଵଷܫ +  ,ଵସܫ

(6)

where ߝෝ  and ߰  denote the estimated coefficient of the covariate and the residual when a log-linear 

regression model log ݕ ෞߙ~ + ෝߝ log	݊  is applied with ݏ(ఌ)-weights. Note that ߝෝ  and ߰  depend on the size 

elasticity ߝ because of the ݏ(ఌ)-weighted regression. Estimate ߝෝ  is usually close to ߝ, the point at which the 

minimum of the e-i curve is located when the curve is ∪-shaped. 

The second term ܫଶ is further decomposed as follows: ܫଶ = − ധߪ2√1 ߶෨ (ߝ − ෝߝ )ଶ2ߪଶധധധ COV, ൬log ݊݉ ൫log ݊ − log݊തതതതതത൯, log ቀ݉݊ቁଶ൰
+ ߝ) − ෝߝ )ଶ2 COV, ൭log ݊݉ ൫log ݊ − log ݊തതതതതത൯, log ቀ݉݊ቁଶ ൬ ଶߪ1 − +ଶധധധ൰൱ߪ1 12COV, ൭log ݊݉ ൫log ݊ − log ݊തതതതതത൯, ൫߰ − ߰ ൯ଶߪଶ ൱ + 12COV, ቀlog ݊݉ ൫log ݊ − log ݊തതതതതത൯, ଶߪ ቁ
+ ߝ) − ෝߝ ) COV, ቆlog ݊݉ ൫log ݊ − log ݊തതതതതത൯, log ቀ݉݊ቁ߰ − ߰ߪଶ ቇ
+ ߝ) − ෝߝ ) COV, ቀlog ݊݉ ൫log ݊ − log ݊തതതതതത൯, log ቀ݉݊ቁቁ
+ COV, ቀlog ݊݉ ൫log ݊ − log ݊തതതതതത൯, ߰ − ߰ ቁ൩ = ଶଵܫ + ଶଶܫ + ଶଷܫ + ଶସܫ + ଶହܫ + ଶܫ +  ,ଶܫ

(7)

where ߪଶധധധ ≔ ଵ∑ ௦(ഄ) ఙమൗ, . 

Among the terms in type I approximations (5) – (7), ܫଵଵ, ܫଶଵ, ܫଶ and ܫହ involve the variance or higher 

moments of log ସ involve the covariance of polynomials of logܫ ଶସ andܫ ,ଶଶܫ ,ଵସܫ ,ଵଶܫ ;݊ ݊ with ߪ, ߪଶ  

or their reciprocals; and ܫଵଷ, ܫଶଷ, ܫଶହ and ܫଶ involve the covariance of polynomials of log ݊ with ߰  or ߰  

relative to ߪ. Let the sums of the respective terms be denoted ܭ ≔ ଵଵܫ + ଶଵܫ + ଶܫ + ܭ ,ହܫ ≔ ଵଶܫ + ଵସܫ ଶଶܫ+ + ଶସܫ + ସܫ , and ܭట ≔ ଵଷܫ + ଶଷܫ + ଶହܫ + ଶܫ . The rest term 	ܫଷ  involves log ݊ ߪ , , and ߰ . As 

approximations (5) – (7) are expressed in double summation form, it is difficult to understand the contributions 

of the factors and their interactions; hence, let the type I approximation be converted to single summation form 

by further approximations.  

 

2.2.3. Type II approximation 

In the derivation of the type II approximation, ∑ ݊	log , the population-weighted average of log	݊  is 

approximated by log ݊തതതതതത, an ݏ(ఌ)-weighted average of log	݊ , to obtain an approximation of ܭ as follows:  



ܭ = ଵଵܫ + ଶଵܫ + ଶܫ + ≓ହܫ −√2߶ ቀΦିଵ൫Φ෩൯ቁ ߝ − ധߪෝߝ ൫log ݊ − log݊തതതതതത൯ଷതതതതതതതതതതതതതതതതതതതത
− 12√2߶෨ ߝ) − ෝߝ )ଶߪധ ∙ ଶധധധߪ ൫log ݊ − log݊തതതതതത൯ସതതതതതതതതതതതതതതതതതതതത + ൫log ݊ − log݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതଶ൨
+ 1√2߶෨ ߝ − ധߪෝߝ ൫log ݊ − log ݊തതതതതത൯ଷതതതതതതതതതതതതതതതതതതതത + ധߪ2√ ߶෨൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതത. 

(8)

The first and fourth terms in approximation (8) are identical to ܫଵଵ and ܫହ, respectively. By further applying the 

approximation ߶ ቀΦିଵ൫Φ෩൯ቁ ≒ ߶෨  with an integration of the terms corresponding to ܫଵଵ  and ܫଶ , 

approximation (8) is shortened as follows: − 1√2߶෨ ߝ − ധߪෝߝ ൫log ݊ − log ݊തതതതതത൯ଷതതതതതതതതതതതതതതതതതതതത − 12√2߶෨ ߝ) − ෝߝ )ଶߪധ ∙ ଶധധധߪ ൫log ݊ − log ݊തതതതതത൯ସതതതതതതതതതതതതതതതതതതതത + ൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതଶ൨
+ ധߪ2√ ߶෨൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതത. 

(8)΄

Using the approximations 1 ⁄ധߪ ≒ 1 ⁄തߪ , 1 ⁄ଶധധധߪ ≒ 1 ⁄തଶߪ , and 1 ⁄ߪ = ሾ(ߪଶ + (ଶߪ 2⁄ ሿି/ଶ ≒ ቂ1 − ൫ఙమ ିఙഥమ൯ା൫ఙమିఙഥమ൯ସఙഥమ ቃ തൗߪ , where ݇ = −1, 1, 2 and ߪത ≔ ൫∑ ଶߪ(ఌ)ݏ ൯ଵ/ଶ , in 

addition to ∑ ݊	log ≒ log ݊തതതതതത, ܭ is replaced as follows: ܭ = ଵଶܫ + ଵସܫ + ଶଶܫ + ଶସܫ + ≓ସܫ √2߶ ቀΦିଵ൫Φ෩൯ቁ ߝ) − ෝߝ തߪ( COV ቆቂ൫log ݊ − log ݊തതതതതത൯ଶ − ൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതቃ ൫log ݊
− log ݊തതതതതത൯, തଶቇߪଶ4ߪ + √2߶ ቀΦିଵ൫Φ෩൯ቁߪത COV ቆ൫log ݊ − log ݊തതതതതത൯ଶ, തଶቇߪଶ4ߪ
+ 1√2߶෨ ߝ) − ෝߝ )ଶߪധ ∙ തଶߪ ቈCOV ቆቀ൫log ݊ − log ݊തതതതതത൯ଶ − ൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതቁଶ , തଶቇߪଶ4ߪ
− 4൫log ݊ − log ݊തതതതതത൯ଷതതതതതതതതതതതതതതതതതതതതCOV ቆlog ݊ , തଶቇߪଶ4ߪ
+ 6൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതCOV ቆ൫log ݊ − log݊തതതതതത൯ଶ, തଶቇߪଶ4ߪ
− 1√2߶෨ ധߪതଶߪ COV ቆ൫log ݊ − log ݊തതതതതത൯ଶ, തଶቇߪଶ4ߪ − √2߶෨ തߪ1 COV ቆ൫log ݊ − log ݊തതതതതത൯ଶ,  .തଶቇߪଶ4ߪ

(9)

By further applying the approximations ߶ ቀΦିଵ൫Φ෩൯ቁ ≒ ߶෨  and ߪത ≒ ധߪ  with an integration of the terms 

corresponding to ܫଵସ, ܫଶସ and ܫସ, approximation (9) is shortened as follows: 



√2߶ ቀΦିଵ൫Φ෩൯ቁ ߝ) − ෝߝ തߪ( ቈCOV ቆ൫log ݊ − log ݊തതതതതത൯ଷ, തଶቇߪଶ4ߪ − ൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതCOV ቆlog ݊ , തଶቇߪଶ4ߪ
+ 1√2߶෨ ߝ) − ෝߝ )ଶߪധ ∙ തଶߪ ቈCOV ቆ൫log ݊ − log ݊തതതതതത൯ସ, തଶቇߪଶ4ߪ − 4൫log ݊ − log ݊തതതതതത൯ଷതതതതതതതതതതതതതതതതതതതതCOV ቆlog ݊ , തଶቇߪଶ4ߪ
+ 4൫log ݊ − log ݊തതതതതത൯ଶതതതതതതതതതതതതതതതതതതതതCOV ቆ൫log ݊ − log ݊തതതതതത൯ଶ, തଶቇߪଶ4ߪ
− 1√2߶෨ 2 − ധߪതଶߪ COV ቆ൫log ݊ − log ݊തതതതതത൯ଶ,  .തଶቇߪଶ4ߪ

(9)΄

With respect to ܭట, the additional approximations ൫߰ − ߰ ൯ ⁄ߪ ≒ ൫߰ − ߰ ൯ ⁄ധߪ , ൫߰ − ߰ ൯ଶ ଶൗߪ ≒൫߰ − ߰ ൯ଶ ⁄ଶധധധߪ  and ൫߰ − ߰ ൯ ⁄ଶߪ ≒ ൫߰ − ߰ ൯ ⁄ଶധധധߪ  yield to the following replacement: ܭట = ଵଷܫ + ଶଷܫ + ଶହܫ + ≓ଶܫ ധߪ2√ ߶ ቀΦିଵ൫Φ෩൯ቁ COV ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ
− ଶധധധ߶෨COVߪധߪ2√12 ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ
+ ധߪ2√1 ߶෨ ߝ − ଶധധധߪෝߝ COV ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ − ധߪ2√1 ߶෨COV ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ, 

(10)

where ߰ ≔ ∑ ߰ . By further applying approximations ߶ ቀΦିଵ൫Φ෩൯ቁ ≒ ߶෨  and ߪଶധധധ ≒ ധଶߪ  with an 

integration of the terms corrersponding to ܫଵଷ and ܫଶ, approximation (10) is shortened as follows: 1√2ߪധ ߶෨COV ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ − ധଶߪധߪ2√12 ߶෨COV ቀ൫log ݊ − log݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ
+ ധߪ2√1 ߶෨ ߝ − ധଶߪෝߝ COV ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ. 

(10)΄

The rest term ܫଷ, an interaction term of log ଶݍ  andߪ/1 ,݊ , is ignored because ܫଷ is usually very small. 

The sum of approximations (8) – (10) is defined as the type II approximation. As mentioned in Section 3, the 

type II approximation is relatively less accurate than the type I approximation around ߝ = 1 in low-income 

countries; however, it is not particularly important for the verification of convexity. 

The fourth term ܫହ of ܭ’s approximation in (8), consisting of the variance of log ݊ multiplied by a positive 

value √2߶෨ ⁄ധߪ , is always positive and usually the largest contributor to the overall approximation. The first 

through third terms in approximation (8), corresponding to ܫଵଵ, ܫଶଵ and ܫଶ, involve the centred third and 

fourth moments of log ݊ and the square of the variance of log ݊. The second term is always negative. As the 

inequality ߶ ቀΦିଵ൫Φ෩൯ቁ > ߶෨ holds, although they usually have similar values, the absolute value of the first 

term is larger than that of the third term. In addition, as the centred third moment of log ݊ is usually negative, 

the sum of the first and third terms is usually negative around ߝ = 0, whereas the sum is positive around ߝ = 1. 

Thus, approximation (8) reveals that the range of log ݊ needs to be sufficiently narrow and the shape of log ݊’s 

size distribution needs to be moderate (not extremely two-sided) such that the centred higher moments of log ݊ 

and the square of the variance of log ݊ are sufficiently small relative to the variance of log ݊ to satisfy ܭ > 0. 

Furthermore, because ߪଶധധധ is included in the denominator of the multiplier for the second term, approximation 



(8) also reveals that the average within-group income dispersion needs to be sufficiently large. ܭఙ ’s 

approximation in (9) tells us that the covariance of ߪଶ ⁄തଶߪ4  with log ݊ and its higher moments should be 

sufficiently small when ܭఙ < 0; that is, a deviation from the IID condition relative to the average income 

dispersion ߪതଶ  and its interactions with household size are allowed to a limited extent. Similarly, ܭట ’s 

approximation in (10) tells us that a deviation ߰  from the LL condition and its interactions with household 

size are allowed as long as the overall type II approximation remains positive. 

The average within-group income dispersion can be considered a required factor for the convex e-i curve. The 

factor affects the overall type II approximation via the multipliers for ܫଶଵ in ܭ; ܫଶଶ and ܫଵସ + ଶସܫ + ߰	 s are equal andߪ ట. If the IID and LL conditions hold, that is, theܭ ଶହ inܫ ଶଷ andܫ ఙ; andܭ ସ inܫ = 0, then ܭ = టܭ = 0. In this case, restrictions on the range of log ݊ and the average magnitude of ߪ are still 

necessary to satisfy ܭ > 0. However, the restrictions are for convexity. The e-i curve is ∪-shaped without the 

restrictions (except for the constraints 0 < ߝ < 1), as mentioned in the paragraph above on the end-point 

condition (2). Thus, the average of ߪ can only be one of the factors for a ∪-shaped relation when either the 

IID or LL condition is not satisfied. It also should be noted that the e-i curve may be convex even if ܭ ≤ 0 

because it is an approximate condition. 

In the above discussion, four factors are specified to ensure that the e-i curve is convex. They concern the 

range of log ݊, the average of ߪ, the relative fluctuation of ߪ and the fluctuation of ߰ . An additional factor 

that should be included when seeking completeness concerns ߝෝ , the slope of regression line when log   isݕ

regressed on log ݊. In the type II approximation, the slope ߝෝ  affects ܭ, ܭఙ, and ܭట via ߝ − ෝߝ  in the 

multipliers for the numbers of the terms. The change in the slope in Example 7 of Subsection 2.1 is equivalent to 

shifting the e-i curve 0.5 to left. To the extent that the MLN approach is valid, ߝෝ  should be regarded as a 

shifter of the e-i curve. When the e-i curve is non-∪-shaped, if the range of size elasticity is extended beyond [0, 

1] to certain degree, a change of ߝෝ  may cause the non-∪-shaped curve. Similar to the average of ߪ and the 

range and shape of log ݊, the slope ߝෝ  can only be one of the factors for the ∪-shaped e-i curve when either 

the IID or LL condition is not satisfied. 

Because of the complex interdependency between the five factors, it is difficult to specify a permissible range 

of each factor independently or in simple formulas without losing practicality. The next section empirically 

demonstrates that actual income distributions satisfy the five factors in the sense that the type I and II 

approximations are positive, and the Gini index e-i curves are convex. 

 

3. Relationships between Size elasticity and Income Inequality Index in the Thirty-Four LIS 

Countries 

3.1. Empirical Relationships between Size elasticity and Major Inequality Indices 

Datasets for 32 countries for 2004 or around 2004 (Wave VI) and those of two additional countries, Belgium 

and Russia, for 2000 (Wave V) from the LIS database are selected for the empirical study. Many high-income 

countries, such as Western European and North American countries, South Korea, and Taiwan, are included. 

Although the coverage of the LIS database has been expanding rapidly, there are fewer participating countries 

from Eastern Europe and the low- or middle-income country group than those from the high-income country 



group in Wave VI. The 34 countries from the LIS include the Czech Republic, Estonia, Hungary, Poland, Russia 

and Slovenia from Eastern Europe or the former Soviet Union, and Brazil, Columbia, Guatemala, Mexico, Peru 

and Uruguay, which represent low- or middle-income countries of other regions (abbreviated LMI6 hereafter).  

The size elasticity at the minimum of the e-i Gini index curve, that is, the point at which the Gini index value 

for individual equivalised disposable income reaches its minimum, ranges from 0.2 to 0.8 except for LMI6, as 

shown in Table 1. The curves are ∪-shaped without other minimal points. Among the LMI6, the minimum point 

of the curve is located near ߝ = 0 for Brazil (0.06), Columbia (0.09) and Mexico (0.13),3 whereas the 

minimum point of the curve for Peru (0.36) and Uruguay (0.22) is inner than 0.2. Those five countries also have ∪-shaped e-i curves in the sense that the minimum point is located inside of the interval [0, 1]. However, in 

Guatemala, the Gini index value reaches the minimum at ߝ = 0, and the e-i curve is strictly non-∪-shaped. The 

LMI6 consists of six countries that are located in Central and South America. It is too early to draw the 

conclusion that the minimum point of the e-i curve tend to be located at or near ߝ = 0 among low- or 

middle-income countries.  

The end-point condition holds for all countries except for Guatemala, whereas the approximate condition (2)΄ 

holds for all 34 countries, as shown in Table 1. However, the Theil and SCV e-i curves reach the minimum at ߝ = 0 in Guatemala. In the case of Theil, the minimum is also attained at ߝ = 0 in Columbia and Mexico. 

SCV violates condition (2)΄ much more than Theil. In fact, the inconsistency is found in nine countries, 

including Norway and Sweden. Thus, regarding the SCV measure, the generality of the ∪-shaped e-i curve is 

denied even among high-income countries. As shown in Figure 2, the SCV e-i curve is concave for Sweden. The 

shape of the MLD e-i curve is consistent with condition (2)΄ in all 34 countries. 

The Gini index e-i curve is non-∪-shaped for Guatemala, as mentioned above, whereas its convexity is 

satisfied in all 34 countries. Thus, the empirical study based on the recent income distributions in LIS countries 

reveals that the end-point condition essentially determines whether the e-i curve is ∪-shaped. 

 

3.2. The Overall Accuracy of the MLN, Type I and II Approximations 

Using the MLN approach, the disposable income distribution within group Γ, consisting of all n-person 

households, is replaced with the log-normal distribution ݕ)ܰܮ − ଶߪ 2⁄ ,   andݕ ଶ) that has the same averageߪ

the same Gini index ܩ, where ܩ = 2Φ൫ߪ √2⁄ ൯ − 1 (cf. Kleiber and Kotz, 2003). This approach verifies 

that the approximate conditions for the convex e-i curve in Section 2 hold for the 34 countries. Taking the 

sample sizes and household size distributions into consideration, households with 12 or more persons are 

classified into a single group in Guatemala and Peru, those with 9 or more are grouped together in Brazil, 

Columbia, Israel, Mexico, Taiwan and Uruguay, and those with 6 or more are grouped together in the remindar 

of the countries. The e-i curves for the distributions fitted using the MLN approach (the MLN e-i curves) are 

compared with the original curves in the upper-left panel, their derivatives are compared in the upper-right panel, 

and their second-order derivatives and the type I and II approximations are compared in the lower-left panel in 

Figures 3a – 3d for Denmark, Hungary, the USA and Uruguay, respectively, and in Annex 3 for all 34 countries. 

                                                  
3 Household consumption data is only available for 9 countries of the 34 countries. The minimum point of the e-i curve for consumption is 
close to that for disposable income in those countries. In Guatemala, the curve for consumption also reaches the minimum at ߝ = 0 and is 
strictly non-∪-shaped. 



The first and second-order derivatives ߲ܩ(ఌ) ⁄ߝ߲  and ߲ଶܩ(ఌ) ⁄ଶߝ߲  of the original e-i curves are numerically 

derived from the Gini indices ܩ(ఌ)s at size elasticity values of ߝ = ݇ 100⁄ , where ݇ = 0,⋯ ,100 (calculations 

using a larger number of elasticity values corresponding to more minute subdivisions of the interval [0, 1] cause 

large fluctuations in ߲ଶܩ(ఌ) ⁄ଶߝ߲ ). When comparing the countries’ Gini index values at ߝ = 0.5, Denmark has 

the lowest value 0.2328 among the high-income countries and the second lowest value after Slovenia (0.2313) 

among all 34 countries. Guatemala (0.5115) has the third highest value after Columbia (0.5339) and Peru 

(0.5251) among all 34 countries. Furthermore, Guatemala is the only country that has a non-∪-shaped e-i curve 

because of the failure to satisfy the end-point condition (2). The USA (0.3747) has the highest income inequality 

among the high-income countries except Israel (0.3770). Hungary (0.2914) is approximately at the average 

income inequality among Eastern Europe and the former Soviet Union.  

 

 

Table 1 
Location of the Minimum Point of the e-i curve of Major Inequality Measures for Disposable Income 

 

Country Year 
ε0 COV(log ݊ , ) COVݕ ቀlog ݊ ,  ݊ቁݕ

Gini MLD Theil SCV 

Slovenia 2004 0.67  0.71 0.65 0.59 + - 

Denmark 2004 0.68  0.69 0.65 0.46 + - 

Sweden 2005 0.63  0.65 0.60 0.00 + - 

Finland 2004 0.63  0.65 0.55 0.01 + - 

Czech Rep 2004 0.69  0.66 0.64 0.53 + - 

Austria 2004 0.55  0.57 0.53 0.49 + - 

Luxembourg 2004 0.47  0.47 0.43 0.37 + - 

Switzerland 2004 0.35  0.39 0.32 0.21 + - 

Netherlands 2004 0.50  0.47 0.42 0.22 + - 

France 2005 0.46  0.48 0.45 0.43 + - 

Norway 2004 0.63  0.68 0.64 0.00 + - 

Germany 2004 0.53  0.56 0.46 0.00 + - 

Hungary 2005 0.60  0.57 0.52 0.25 + - 

Taiwan 2005 0.56  0.61 0.50 0.35 + - 

South Korea 2006 0.52  0.63 0.48 0.32 + - 

Belgium 2000 0.66  0.62 0.22 0.00 + - 

Australia 2003 0.52  0.58 0.50 0.44 + - 

Canada 2004 0.57  0.60 0.56 0.51 + - 

Ireland 2004 0.61  0.63 0.57 0.34 + - 

Spain 2004 0.55  0.56 0.51 0.44 + - 

Poland 2004 0.44  0.40 0.46 0.70 + - 

Greece 2004 0.66  0.66 0.64 0.60 + - 

Italy 2004 0.48  0.43 0.40 0.23 + - 

Estonia 2004 0.81  0.78 0.76 0.70 + - 

UK 2004 0.53  0.55 0.50 0.45 + - 

US 2004 0.40  0.42 0.38 0.31 + - 

Israel 2005 0.20  0.25 0.21 0.08 + - 

Russia 2000 0.75  0.71 0.54 0.00 + - 

Urguay 2004 0.22  0.20 0.29 0.47 + - 

Mexico 2004 0.13  0.20 0.00 0.00 + - 

Brazil 2006 0.06  0.08 0.01 0.00 + - 

Guatemala 2006 0.00  0.06 0.00 0.00 + - 

Peru 2004 0.36  0.40 0.30 0.16 + - 

Colombia 2004 0.09  0.13 0.00 0.00 + - 

Note: Countries are listed in ascending order of the Gini indices at size elasticity ߝ = 0.5. 



 

Fig. 2. The e-i curves of Major Inequality Measures for Sweden, 2005 

Note: The curve for SCV is a linear transformation of the e-i curve by the formula (index values − 2.3)/4. 

 

The maximum absolute error in the MLN e-i curves as an approximation of the original curve is 0.0105, the 

maximum absolute error for each country averaged 0.0029, the Mean Absolute Error (MAE) is 0.0013, and the 

square Root of the Mean Square Error (RMSE) is 0.0019. In terms of the absolute error rate with respect to the 

original curve, the corresponding figures are 2.9%, 0.8%, 0.4% and 0.6%, respectively. The absolute difference 

of the minimum point of the MLN e-i curve from that of the original curve is 0.08 at maximum, 0.02 in terms of 

MAE, and 0.03 in terms of RMSE. The MLN e-i curve and the original curve reach their minimum at ߝ = 0 for 

Guatemala, and at an inner point for other countries. Thus, the MLN e-i curve and the original are non-∪-shaped 

for Guatemala. The absolute error rate in the derivative of the MLN e-i curve relative to the range of the original ߲ܩ(ఌ) ⁄ߝ߲ , i.e. relative to its maximum minus its minimum for a given country, is 11.5% at maximum, 3.5% in 

terms of the mean of the maximum values for the individual countries, 0.4% in terms of MAE, and 0.6% in 

terms of RMSE. With respect to the absolute error rate in the second-order derivative of the MLN e-i curve 

relative to the original ߲ଶܩ(ఌ) ⁄ଶߝ߲ , the corresponding figures are 27.2%, 9.7%, 4.8% and 6.2%, respectively. In 

all cases, the maximum errors occur in Belgium, where the income dispersion is extremely large within the 

two-person household group, and some singularity exists in the income distribution.  

The type I approximation of the second-order derivative of the MLN e-i curve tends to be inferior around ߝ = 0 in low-income-inequality countries such as Denmark, as shown in the lower-left panel of Figure 3a. The 

absolute error rate as an approximation of ߲ଶܩ(ఌ) ⁄ଶߝ߲  for the MLN e-i curve is 80% at maximum (51% at 

maximum in Slovenia). In addition to low-income-inequality countries such as Denmark, Sweden (a Gini index 

value of 0.2392 at ߝ = 0.5), Slovenia, and Finland (0.2646), Norway (0.2837) and Belgium (0.3176) also suffer 

from large approximation errors around ߝ = 0. Among the remaining 28 countries, the absolute error rate is 

much lower, 18.9% at maximum, 6.9% in terms of the average of the maximum values for the individual 

countries, 1.1% in terms of MAE, and 2.3% in terms of RMSE. Similarly, the absolute error rates as 

approximations of the original ߲ଶܩ(ఌ) ⁄ଶߝ߲  are summarised as 16.6%, 10.2%, 4.8%, and 5.7%, respectively. In 

Norway, as well as in other northern European countries, the one-person household group has a large population 

share. Furthermore, the average income of one-person households relative to that of other households is lower 
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than in other countries, resulting in a larger deviation from the LL condition, which is seemingly the main cause 

for inaccuracy in the type I approximation. In Belgium, extremely large income dispersion within the 

two-person household group seemingly causes the inaccuracy.  

 

Fig. 3a. The e-i curve and Its Approximations for Denmark, 2004 

 

 

Fig. 3b. The e-i curve and Its Approximations for Hungary, 2005 
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Fig. 3c. The e-i curve and Its Approximations for the USA, 2004 

 

 

Fig. 3d. The e-i curve and Its Approximations for Guatemala, 2006 
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The type II approximation of the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲  tends to differ from the type I approximation with a 

relatively large magnitude around ߝ = 1 in high-income-inequality countries such as Guatemala, as shown in 

the lower-left panel of Figure 3d. Apart from this difference, the type II approximation inherits accuracy and 

inaccuracy from type I in that the absolute error rate as an approximation of the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲  is large 

around ߝ = 0 in low-income-inequality countries, Norway, and Belgium, being 71.5% at maximum. If these 

six countries are excluded, however, the absolute error rate is much lower; 15.7% at maximum, 5.6% in terms of 

the average of the maximum values for the individual countries, 1.4% in terms of MAE, and 2.3% in terms of 

RMSE. The corresponding figures for the absolute error rates as approximations of the original ߲ଶܩ(ఌ) ⁄ଶߝ߲  are 

17.7%, 10.0%, 4.5%, and 5.6%, respectively. Thus, type II is not necessarily inferior to type I.  

Although it is difficult to completely avoid inaccurate approximations of higher-order derivatives, the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲  and its type I and II approximations are always positive in all 34 countries. To verify that the five 

factors for a convex e-i curve described in Section 2 are empirically satisfied, the MLN approach provides 

sufficiently well-fitted parametric distributions, and the type I and II approximations are valid.  

 

3.3. Results of Factor Decompositions by the Type I and II Approximations 

The results of factor decompositions by the type I and II approximations are presented in Tables 2 and 3 for 

Denmark, Hungary, the USA and Uruguay, and in Annex 1 and 2 for all 34 countries. The term ܫହ, which is the 

variance of log ݊ with a multiplier √2߶෨ ⁄ധߪ , makes the largest positive contribution in the type I and II 

approximations. To observe the degree to which the magnitude of the contribution of ܫହ is reduced by the 

household size distribution, the fluctuation of ߪ and ߰ and their interrelations, the ratios of terms such as ܭ,ܭఙ and ܭట to ܫହ (called the ‘relative contribution’ hereafter) are presented in parenthesis (),4 and the 

ratios of the components such as the centred higher moments of log ݊ and the variances of ߪ ⁄ଶധധധߪ4  and ߰ 

to the variance of log ݊ are presented in braces {}. 

The overall type II approximations for Denmark relative to ܫହ  are 10.7%, 83.2%, and 84.0% at ߝ =0, 0.5, and	1, respectively (the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲  relative to ܫହ are 37.6%, 83.0%, and 84.4%, respectively). 

The ratios are 96.4%, 94.2% and 82.1%, respectively, for Guatemala (96.4%, 92.6%, and 74.1%, respectively, 

for the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲ ). At ߝ = 0, the ratio of the overall type II to ܫହ for Guatemala is higher than that for 

Denmark. Among all 34 countries, the ratio is lowest for Denmark and highest for Guatemala, and higher 

income-inequality countries tend to have higher ratios. At ߝ = 0.5, the lowest value is 77.2% (80.7% for the 

MLN) for Slovenia, and the highest is 98.5% (98.8%) for Peru. The range of the ratio is relatively narrow at ߝ = 0.5. At ߝ = 1, the lowest value is 67.4% (68.7%) for Switzerland, and the highest is 97.8% (93.7%) for 

Peru. A clear trend in the relationship between the ratio and the level of income inequality is not observed in 

case ߝ = 1. The lack of a clear tendency is due to differences in the location of the minimum point of the e-i 

curve, as will be explained later. Although the ratio’s range is wider than that at ߝ = 0.5, the overall 

approximations are greater than 2/3 of ܫହ in all countries. The country with the lowest or highest ratio is 

identical among the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲ , type I and II approximations, except for the country with the highest 

ratio at ߝ = 1. In the ߝ = 1 case, Greece has the highest ratio for the MLN ߲ଶܩ(ఌ) ⁄ଶߝ߲  (96.9%) and type I 
                                                  
4 For simplicity, the approximations of ܭ, ,ఙܭ ,ܭ  in the type II approximation are denotedܫ ట, andܭ ,ఙܭ  , ignoringܫ ట, andܭ
distinctions hereafter. 



but has a slightly lower ratio (97.7%) than Peru for the type II approximation. The ratio of the original ߲ଶܩ(ఌ) ⁄ଶߝ߲  to ܫହ also exhibits a similar tendency concerning its range and its relationship to the level of 

income inequality, although this result is omitted here.  

The decompositions into ܭ,ܭఙ, and ܭట reveal that ܭ is always positive for all 34 countries. However, if ܫହ is removed, it becomes negative around ߝ = 0 and ߝ = 1 for most countries. In particular, around ߝ = 0, 

the absolute value |ܭ −  ఙ| isܭ| టห except for low-income countries. Althoughܭఙ| and หܭ| ହ| is larger thanܫ

larger than หܭటห at ߝ = 1 in some low-income countries, หܭటห is larger than |ܭఙ| in most cases. In particular, 

around ߝ =  టห. For example, in Denmark, oneܭఙ is positive for many countries and much smaller than หܭ ,0

of the lowest income-inequality countries, ܭ − ߝ ହ, respectively, atܫ ట are 5.1% and -20.0% ofܭ	 ఙ andܭ ହ in the type I approximation, andܫ ହ is -79.4% ofܫ = 0. In the type II approximation, the corresponding figures 

are -70.8%, 5.0% and -23.5%, respectively. In Guatemala, a low-income country with the third-highest income 

inequality, the corresponding figures are -0.3%, 0.4% and -2.9% in type I approximations, and -0.3%, 0.6% and 

-3.9% in type II approximations at ߝ = 0. The rest term ܫଷ in type I approximations is 1.9% of ܫହ for 

Denmark and -0.3% for Guatemala at ߝ = 0.  

In summary, the empirical study using the LIS 34 countries reveals that the sensitive points are around ߝ = 0 

in the lowest-income-inequality countries (or non-high-income-inequality countries with some singularity in 

their income distributions) with respect to the possibility of a non-convex e-i curve. The most likely contributor 

to a negative ߲ଶܩ(ఌ) ⁄ଶߝ߲  is the shape of (the logarithm of) household size distribution and a less likely 

contributor is the magnitude of the deviation from the LL condition and its interrelation with household size if 

the contribution of the level of income inequality is set aside. 

 

3.4. Effects of the Wide Range of Household Sizes in Low-Income Countries 

As households with large families represent a significant share of the population in low-income countries, 

higher moments of log ݊ may be so large relative to the variance of log ݊ that the positive contribution of ܫହ 

is cancelled out. However, in practice, the relative contributions of ܭ,ܭఙ, and	ܭట in the type I and II 

approximations relative to ܫହ do not show clear effects of the wider range of household sizes. As shown in 

Table 3, the variance of log ݊ in low-income countries does not differ a great deal from that in high-income 

countries. The former actually tends to be slightly lower than the latter, whereas the centred fourth moment of log ݊ and the variance of ൫log ݊ − log ݊തതതതതത൯, where ݇ = 2,3,4, tend to be larger in low-income countries; in 

particular, the gap between the high- and low-income country groups is wider around ߝ = 1. The centred third 

moment of log ݊ tends to be larger in the absolute value in high-income countries around ߝ = 0, whereas it 

tends to be larger in low-income countries around ߝ = 1. However, the contributions of those relative increases 

in low-income countries are generally offset by the rise of the average within-group income dispersion 

represented by ߪധ, ߪଶധധധ or something similar, as explained below. 

 



Table 2 
The MLN e-i curve and Its Factor Decompositions by the Type I and II Approximations 

 

  Denmark, 2004 Hungary, 2005  USA, 2004 Guatemala, 2006 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 

Original Gini 0.2888 0.2328 0.2460 0.3240 0.2914 0.3101   0.3882 0.3747 0.4033 0.4982 0.5115 0.5491  

Original ߲ଶܩ ⁄ଶߝ߲  0.0981 0.2926 0.3112 0.0963 0.2170 0.2173   0.1237 0.1756 0.1493 0.0978 0.0995 0.0763  

MLN ߲ଶܩ ⁄ଶߝ߲  0.0921 0.2851 0.2929 0.1044 0.2058 0.1986   0.1150 0.1659 0.1492 0.0939 0.0929 0.0721  

  (37.6) (83.0) (84.4)  (56.8) (88.8) (83.0)   (74.4) (91.0) (82.2)  (96.4) (92.6) (74.1)  

Type I approximation 0.0184 0.2842 0.2886 0.0875 0.2065 0.1910   0.1141 0.1662 0.1463 0.0944 0.0922 0.0685  

(7.5) (82.8) (83.2) (47.6) (89.1) (79.8)   (73.9) (91.2) (80.6) (96.8) (91.9) (70.3)  

 I5 0.2448 0.3434 0.3470 0.1838 0.2317 0.2394   0.1545 0.1822 0.1816 0.0975 0.1003 0.0974  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)   (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  

 K0 (20.6) (93.1) (88.4) (66.9) (98.7) (89.2)  (83.0) (100.3) (88.5) (99.7) (96.6) (76.6) 

  deducting I5 (-79.4) (-6.9) (-11.6) (-33.1) (-1.3) (-10.8)  (-17.0) (0.3) (-11.5) (-0.3) (-3.4) (-23.4) 

 Kσ (5.1) (-1.7) (-1.2) (0.2) (1.1) (0.0)  (0.6) (-2.1) (-2.8) (0.4) (-2.3) (-4.6) 

 Kψ (-20.0) (-8.5) (-4.5) (-18.5) (-10.7) (-8.6)  (-10.0) (-6.9) (-5.9) (-2.9) (-2.6) (-2.2) 

 I3 (1.9) (-0.2) (0.4)  (-1.1) (0.1) (-0.9)  (0.2) (-0.1) (0.7)  (-0.3) (0.2) (0.5) 

Type II approximation 0.0263 0.2857 0.2915 0.0952 0.2069 0.2020   0.1148 0.1658 0.1536 0.0939 0.0945 0.0799  

(10.7) (83.2) (84.0) (51.8) (89.3) (84.4)  (74.3) (91.0) (84.6) (96.4) (94.2) (82.1) 

 K0 (29.2) (93.8) (90.5) (71.7) (98.8) (92.6)  (85.8) (100.3) (93.1) (99.7) (98.9) (89.4) 

  deducting I5 (-70.8) (-6.2) (-9.5) (-28.3) (-1.2) (-7.4)  (-14.2) (0.3) (-6.9) (-0.3) (-1.1) (-10.6) 

 Kσ (5.0) (-1.5) (-0.1) (0.1) (1.1) (0.3)  (0.2) (-1.9) (-1.8) (0.6) (-1.1) (-3.3) 

 Kψ (-23.5) (-9.1) (-6.4)  (-19.9) (-10.6) (-8.5)  (-11.7) (-7.4) (-6.7)  (-3.9) (-3.7) (-4.1) 

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 

The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionsܭ ఙ, andܭ

 

 

 



Table 3 
Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i curve by the Type II Approximation 

 

  Denmark, 2004 Hungary, 2005 USA, 2004 Guatemala, 2006 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.616 0.670 0.721 0.487 0.565 0.636  0.408 0.471 0.534 0.040 0.080 0.151  ߶෨ 0.2894 0.3626 0.3439 0.3246 0.3609 0.3338  0.3326 0.3497 0.3206 0.3130 0.3012 0.2671  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3731 0.3820 0.3801 0.3667 0.3722 0.3683  0.3509 0.3542 0.3474 0.3166 0.3119 0.2985  

RMS of σn (ߪത) 0.3865 0.3946 0.4036  0.5079 0.5119 0.5153   0.6717 0.6818 0.6938  0.9575 0.9738 0.9889  ߪധ 0.3867 0.3909 0.3957 0.5082 0.5103 0.5121  0.6749 0.6797 0.6856 0.9473 0.9560 0.9642  ߪଶധധധ 0.1481 0.1513 0.1552 0.2579 0.2601 0.2619  0.4546 0.4610 0.4688 0.8920 0.9088 0.9249  log ݊തതതതതത 1.0831 0.9596 0.8230  1.2061 1.0974 0.9744   1.1902 1.0721 0.9406  1.7247 1.6165 1.4983  VAR(log ݊) 0.2313 0.2617 0.2823 0.2035 0.2317 0.2596  0.2217 0.2504 0.2745 0.2086 0.2252 0.2485  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-28.2} {-20.5} {-9.1} {-26.5} {-24.9} {-19.9} {-26.4} {-21.9} {-14.3} {-13.7} {-17.3} {-22.1} 

Centred 4th moment of log ݊ {65.8} {63.5} {59.4} {67.5} {69.6} {67.5} {67.1} {68.0} {66.0} {69.5} {79.5} {88.8} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {42.7} {37.3} {31.2} {47.2} {46.4} {41.6} {44.9} {43.0} {38.6} {48.6} {57.0} {64.0} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {62.7} {51.0} {41.4} {73.3} {68.0} {57.2} {71.3} {64.0} {53.8} {93.9} {116.4} {133.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {60.8} {35.2} {22.3}  {90.3} {65.9} {41.3}  {84.6} {57.4} {35.5}  {190.1} {227.5} {237.7} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {2.08} {1.62} {1.24}  {0.33} {0.24} {0.17}  {0.43} {0.46} {0.48}  {1.35} {1.08} {0.82} VAR൫߰൯ {3.39} {3.42} {3.28} {6.57} {5.99} {5.07} {4.28} {4.45} {4.43} {8.15} {8.63} {9.49} VAR ቀ൫߰ − ߰൯ଶቁ {0.041} {0.029} {0.032}  {0.187} {0.148} {0.151}  {0.145} {0.089} {0.066}  {0.897} {1.246} {1.128} COR(log ݊ , ଶ) -0.5672 -0.6629 -0.7147 -0.7377 -0.6434 -0.5073  -0.9380 -0.9583 -0.9728 -0.7281 -0.6895 -0.6532  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.4657 0.2757 0.0056 -0.2205 -0.3749 -0.5743  0.6434 0.5446 0.4062 -0.1045 -0.1113 -0.0932  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.2494 -0.3072 -0.4011 -0.3072 -0.2826 -0.2754  -0.8070 -0.8278 -0.8448 -0.4211 -0.4339 -0.4500  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.3952 0.3898 0.2188  -0.1121 -0.2603 -0.4901   0.6611 0.6334 0.4887  0.0687 0.0546 0.0361  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8896 -0.9322 -0.9788 -0.9005 -0.9062 -0.9243  -0.8933 -0.9191 -0.9510 -0.2476 -0.5059 -0.6879  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.9452 0.7544 0.3799 0.8296 0.7600 0.5587  0.9398 0.9527 0.6809 0.5673 0.6301 0.6793  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.4262 0.2649 0.0193  0.3649 0.2469 0.0781   0.4450 0.3331 0.1539  0.4887 0.5189 0.4869  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 



Regarding the contribution of ܭ, the centred fourth moment of log ݊ included in 	ܫଶଵ is 69.5% relative to 

the variance of log ݊ in Guatemala, which is only 1.06 times higher than that in Denmark (65.8%) at ߝ = 0, 

whereas the ߪଶധധധ included in the denominator of the multiplier for 	ܫଶଵ is 6.02 times higher in Guatemala 

(0.8920) than in Denmark (0.1481). Furthermore, ߝෝ  is much closer to zero in Guatemala (0.040) than in 

Denmark (0.616) because ߝෝ  is located near the minimum point of the e-i curve, resulting in a substantially 

lower relative contribution of |ܫଶଵ| (the ratio of |ܫଶଵ| to ܫହ) due to (ߝ − ෝߝ )ଶ being included in the numerator 

of the multiplier for ܫଶଵ. The absolute value of the centred third moment of log ݊ included in ܫଵଵ +  ଶܫ

relative to the variance of log ݊ is lower in Guatemala (-13.7%) than in Denmark (-28.2%). As |ߝ − ෝߝ | is also 

much smaller, the relative contribution of |ܫଵଵ +  ଶ| is also substantially lower. Thus, the relative contributionܫ

of |ܭ − |ହܫ  is much smaller at ߝ = 0  in Guatemala. At ߝ = 1 , although ߪଶധധധ  is 5.96 times larger in 

Guatemala (0.9249) than in Denmark (0.1552), the centred fourth moment of log ݊ relative to the variance of log ݊ is 1.49 times higher in Guatemala (88.8%) than in Denmark (59.4%), and (ߝ − ෝߝ )ଶ is 9.25 times larger 

because ߝෝ  is much closer to zero in Guatemala (0.151) than in Denmark (0.721), resulting in a doubling of the 

relative contribution of ܫଶଵ. The contribution of ܫଵଵ + ߝ ଶ is positive atܫ = 1. As the absolute value of the 

centred third moment of log ݊ relative to the variance of log ݊ is 2.42 times higher in Guatemala (-22.1%) 

than in Denmark (-9.1%) and ߝ − ෝߝ  is 3.04 times larger, the relative contribution of ܫଵଵ + ଶܫ  is 

approximately 7 times larger, almost offsetting the increase in |ܫଶଵ|. Thus, the relative contribution of ܭ does 

not differ considerably between Denmark and Guatemala at ߝ = 1 . Similar tendencies are observed in 

comparisons between the high- and low-income country groups. Switzerland has the lowest relative contribution 

of ܭ, that is, the highest relative contribution of |ܭ −  ହ|, among the 34 countries because of its relatively lowܫ

income inequality (its Gini index of 0.2704 at ߝ = 0.5 is the 8th lowest), and its relatively leftward location of 

the minimum point of the e-i curve (at 0.35) among the high-income countries.  

Regarding the contribution of ܭట, the variance of ൫log ݊ − log ݊തതതതതത൯ଶ and the variance of ߰  relative to the 

variance of log ݊ are higher for low-income countries than for high-income countries, causing increases of the 

relative contribution of หܭటห, whereas the average of the within-group income dispersion ߪധ shows increases, 

the negative correlation between ߰  and ൫log ݊ − log ݊തതതതതത൯ଶ weakens, and the variance of ൫log ݊ − log ݊തതതതതത൯ଷ 

relative to the variance of log ݊ increases and essentially makes a positive contribution when ߝෝ  comes close 

to zero for the low-income countries, causing decreases of the relative contribution of หܭటห. On balance, the 

relative contribution of หܭటห tends to be smaller for low-income countries at any ߝ, including ߝ = 1. For 

example, comparing Denmark and Guatemala, the variance of ൫log ݊ − log ݊തതതതതത൯ଶ relative to that of log ݊ is 1.14 

times higher for Guatemala (48.6%) than for Denmark (42.7%) at ߝ = 0 and is 2.05 times higher at ߝ = 1 

(31.2% and 64.0%, respectively). The variance of 	߰  relative to that of log ݊ is 2.41 times higher at ߝ = 0 

(3.39% and 8.15%) and 2.89 times higher at ߝ = 1 (3.28% and 9.49%). However, the correlation between ߰  

and ൫log ݊ − log ݊തതതതതത൯ଶ is 0.28 times weaker at ߝ = 0 (-0.8896 and -0.2476), 0.70 times weaker at ߝ = 1 

(-0.9788 and -0.6879), meaning that the relative contribution of 	ܫଵଷ + ߝ ଶ is reduced 0.77 times atܫ = 0 and 

increased 4.1 times at ߝ = 1. With respect to term ܫଶଷ, the variance of ൫߰ − ߰൯ଶrelative to that of log ݊ is 

0.041% for Denmark and 0.897% for Guatemala at ߝ = 0, 0.032% and 1.128%, respectively, at ߝ = 1; that is, 

much higher for Guatemala than for Denmark, meaning that ܫଶଷ makes a much larger relative contribution in 



Guatemala even if the increase of ߪധଶ (about 6 times larger) and change in the correlation between ൫߰ − ߰൯ଶ 

and ൫log ݊ − log ݊തതതതതത൯ଶ are taken into account. However, because the variance of ൫߰ − ߰൯ଶ is much smaller 

than that of ߰  ଶହ, theܫ ଶଷ does not affect the overall change significantly. With respect to the rest termܫ ,

variance of ൫log ݊ − log ݊തതതതതത൯ଷ relative to that of log ݊ is 62.7% for Denmark and 93.9% for Guatemala (1.50 

times higher) at ߝ = 0, 41.4% and 133.2% (3.22 times higher), respectively, at ߝ = 1, and the correlation 

between ߰  and ൫log ݊ − log ݊തതതതതത൯ଷ is 0.4262 and 0.4887 (1.15 times stronger) at ߝ = 0, 0.0193 and 0.4869 

(25.2 times stronger) at ߝ = 1, respectively. However, as ߝෝ  approaches zero in Guatemala in addition to the 

increase in ߪധ, (ߝ − ෝߝ ) ⁄ധଶߪ  in the multiplier reduces the relative contribution of |ܫଶହ| substantially at ߝ = 0. 

At ߝ = 1, the relative contribution of ܫଶହ is positive and shows a substantial increase although the multiplier (ߝ − ෝߝ ) ⁄ധଶߪ  is reduced about 0.5 times, offsetting the negative changes in the other terms. Similar tendencies 

are observed in comparisons between the high- and low-income country groups.  

The relative contribution of ܭఙ ranges from -5.4% to 13.2% (1.9% in terms of MAE) at ߝ = 0, from -8.5% 

to 4.6% (2.2%) at ߝ = 1 in the type II approximation. The relative contribution is often positive or smaller in 

absolute value than that of หܭటห, which ranges from -26.5% to 0.8% (12.7%) at ߝ = 0, from -10.6% to 0.2% 

(4.7%) at ߝ = 1 , although |ܭఙ|  exceeds หܭటห  at ߝ ≥ 0.5  in some low-income countries. The minor 

contribution of ܭఙ is attributed to the smaller magnitude of the variance of ߪ ⁄ଶധധധߪ4 . For example, the variance 

of ߪ ⁄ଶധധധߪ4  relative to that of log ݊ is 2.08% at ߝ = 0 and 1.24% at ߝ = 1 in Denmark and is 1.35% and 

0.82%, respectively, in Guatemala, which is less than the variance of ߰  relative to that of log ݊; the variance 

of ߰  relative to that of log ݊ at ߝ = 0 and ߝ = 1 is 3.39% and 3.28%, respectively, in Denmark and 8.15% 

and 9.49%, respectively, in Guatemala. The generally weaker correlations of ߪ  with log ݊ and higher 

moments of log ݊ compared to those of 	߰  (although the magnitude varies considerably among countries) 

also cause a reduction in the relative contribution of ܭఙ. The variance of ߪ ⁄ଶധധധߪ4  does not significantly differ 

between the high- and low-income country groups. In addition, the increase in ߪതଶ restrains the increases of the 

relative contributions of 	ܫଶଶ and ܫଵସ + ଶସܫ +  ସ in low-income countries (although this is actually somewhatܫ

complicated because the magnitude of the correlation between ߪ  and higher moments of log ݊  varies 

substantially among countries). With respect to the relative contribution of ܫଵଶ, as ߪതଶ or similar statistics does 

not affect ܫଵଶ, a rise in the variance of ൫log ݊ − log݊തതതതതത൯ଷ relative to that of log ݊ increases its absolute value by 

3 – 5 times in low-income countries. The relative contribution of ܫଵଶ is further amplified by the inclusion of ߝ − ෝߝ  in the multiplier at ߝ = 1 because 	ߝෝ  comes much closer to zero in low-income countries. However, 

its increase does not considerably affect the overall relative contribution of ܭఙ. 

 

4. Illustrative Example for Impact of the ∪-Shaped Relationship between Size elasticity and 

the Gini Index on the Measurement of Income Inequality 

4.1. Ways to Ascertain the Impact on Measurement Practices 

Coulter et al. (1992) showed that the e-i curve is ∪-shaped with a minimum point around 0.6 in the UK using 

the 1986 UK Family Expenditure Survey. Additionally, they mentioned that the results suggest that the official 

equivalence scale (McClements, 1977), which corresponds to ߝ ≒ 0.6 in the parametric equivalence scale ν = ݊ఌ of Buhman et al. (1988), tends to yield lower index values relative to other equivalence scales. Banks 



and Johnson (1994) argued that their results are not robust on the grounds that the minimum point of the e-i 

curve is not always located around 0.6. For that reason, index values based on the McClements scale are not 

necessarily lower than those based on other scales for some years, such as 1979 in the case of the Gini index. 

The other argument for the lack of robustness is that, even when the year is limited to 1986, the minimum point 

of the e-i curve moves away from 0.6 as ߟ decreases when using the two-parameter scale ߝ)ߥ, (ߟ = (݊ + ߟ ∙݊)ఌ, where ݊/݊ denotes a number of adult/child household members and 0 ≤ ,ߝ ߟ ≤ 1. Thus, the same 

negative conclusion holds. Jenkins and Cowell (1994) responded negatively to these comments by saying that 

Banks and Johnson exaggerated the instability of the e-i curve while admitting that their results regarding the 

McClements scale are not immutable. Additionally, Jenkins and Cowell (1994) suggest that, when using ߝ)ߥ, (ߟ = (݊ + ߟ ∙ ݊)ఌ , the correct parameter set corresponding to the McClements scale is the pair of ߟ ≒ 0.53 and ߝ ≒ 0.77. The value ߝ ≒ 0.77 is close to the minimum point of the e-i curve when ߟ ≒ 0.53; 

hence, their suggestion is correct even if the more general specification is used. 

With respect to the inter-temporal stability of the impact, the conclusion depends on the time-span being 

considered. The stability against the different equivalence scale specification holds if ߟ is fixed at 0.53 or if it 

is limited to a certain range around 0.53, as explained by Jenkins and Cowell. However, if ߟ is allowed to vary 

in a wide range, the index values could be lower than those derived from the McClements scale according to 

Figure 1b of Jenkins and Cowell (1994). It seems difficult to discover the cases in which a ∪-shaped e-i curve 

has affected the measurement of income inequality in the same manner for a long period, irrespective of the 

choice of equivalence scale specification, without imposing strict (but reasonable) constraints on the parameters 

of the equivalence scale function. In the example given below, by choosing several procedures for parameter 

estimation, the parameter values being compared are restricted to a few numbers. Under the restriction, the 

stable effect of the ∪-shaped e-i curve on the measurement of trends in income inequality can be observed for a 

long period in the example.5 Furthermore, a similar tendency can be observed even if a more general type of 

equivalence scale specification is used. As the selected procedures are either in practical use or considered to be 

appropriate from a theoretical perspective, and both types of procedures exhibit similar tendencies, the example 

is expected to have practical importance. The example would be at least useful to understand what may happen 

under various procedures due to the shape of the e-i curve because inter-temporal changes in income inequality 

are usually measured continuously by one specific procedure for equivalence scale estimation.  

 

4.2. Data and Methods for Estimating Equivalence Scales 

Japanese survey data from 1989 to 2009, cross-tabulated by the number of household members and annual 

income class, is used as an illustration. The data were obtained from the National Survey of Family Income and 

Expenditures (NSFIE), a large family budget survey of approximately 60,000 sample households (of which, 

approximately 50,000 households contain two or more persons) conducted quinquennially by the Statistics 

Bureau of the Ministry of Internal Affairs and Communications. In the statistical table, six-or-more person 

households are classified into a single group. Gross income before the deduction of direct taxes and social 

insurance premiums is used due to data availability.  

                                                  
5 Jenkins and Cowell (1994) mentioned the possibility of the e-i relationship’s impact on trends in index values. However, they only 
described differences in estimated index values between 1987 and 1988/89. 



First, the popular Engel method is applied for equivalence scale estimation for reference purposes. The 

method assumes that the standard of living is higher when the budget share of food is lower in a homogenous 

household group, and the standard of living is equivalent between two different household groups if the budget 

share of food is the same. The following Working-Leser model is used for the estimation: ߙ~ݓ + ߚ log ܥ + log߶(݊|ߛ), (11)

where ܥ and ݓ denote consumption expenditures and food’s share of consumption, and ߶(∙  is a function (ߛ|

with the parameter ߛ for determining the equivalence scale. The equivalence scale for n-person households is 

derived as ߥ = (ߛ|݊)߶− ⁄ߚ . The Engel method is simple and popular, whereas the derived equivalence scales 

for households with children are argued to be overestimated because children are relatively food intensive. Then, 

a variant of the Engel method is applied. In the variant used by Phipps and Garner (1994), the budget share of 

food is replaced by the budget share of necessities including non-food items. Their method is also used for the 

estimation of Low-Income-Cutoffs (LICOs) in Canada. Five categories (‘food’, ‘clothes and footwear’, ‘fuel, 

light and water charges’, ‘housing’, and ‘furniture and household utensils’) are classified as necessities here. 

This variant intuitively appears to be more suitable for high-income countries; however, it does not have a firm 

theoretical background. To address the lack of a firm theoretical background, an estimation method based on a 

complete demand system is applied. Ray (1983) proposed applying his price scaling method to a non-separable 

extension of the Linear Expenditure System (LES) studied by Blundell and Ray (1982). His method has the 

advantage being solvable in a one-time cross-section data setting without suffering from identification problems 

in addition to its ability to allow for substitutions among expenditure categories. The derived equations are 

represented, as follows: 

ߙ~ݓ + τ(݊|ߜ) + ߚ ܥ(ߛ|݊)߶ , (12)

where ݓ denotes the budget share of category i, and τ(∙  ݊. Three constraints on the parameters in (12) are	The shifter τ varies its value according to household size .ߜ is an intercept shifter variable with the parameter (ߜ|

imposed: ∑ ߙ = 1, ∑ ߚ = 0 and ∑ τ(݊|ߜ) = 0, so that the predicted shares of the categories sum to unity. 

The resulting equivalence scale is ߥ = (ߛ|݊)߶ . In the example, expenditures are aggregated into five 

categories: ‘food’, ‘clothes and footwear’, ‘fuel, light and water charges’, ‘housing, furniture and household 

utensils’, and ‘others’.6  

Although there are several methods based on demand systems such as the Prais-Houthakker method and its 

variant, the McClements method, the parameters are intrinsically not uniquely determined. The procedures 

employed for parameter estimation are not clearly justified from a theoretical point of view. Muellbauer (1980) 

proposed eliminating the identification problem with prior information such as a nutrition-based food scale, but 

it is not easy to choose an appropriate food scale because there are different views about nutrition-based 

measurements. Furthermore, those methods do not allow substitutions among categories. Barten’s scaling 

method is popular in methods based on complete demand systems but it requires repeated cross-sectional data to 
                                                  
6 The Almost Ideal Demand System (AIDS) is probably preferred to the LES and its generalization at present. However, it is not possible to 
estimate the parameters in a one-time cross-section data setting when applying the AIDS with Ray’s price scaling method. If the shifter τ(∙  is excluded, the identification problem can be avoided. However, in that case, the resulting equivalence scales are almost the same as (ߜ|
those derived from equations (12) without shifter τ(∙  in the example presented here. It also should be noted that the equivalent standard (ߜ|
of living can be attained if and only if the budget shares of all categories are identical (the property is called ‘Engel exactness’); thus, no 
substitution is allowed among different household compositions when excluding the shifter.  



avoid the identification problem. As quinquennial data are used, and equivalence scales cannot be regarded as 

constant during the period studied, the Barten method is unsuitable for the example presented here. It also 

should be noted that quasi-price substitution effects are overestimated when a child enters a family, resulting in 

the underestimation of the equivalence scale (Muellbauer, 1977). The Gorman-Barten method addresses the bias 

problem by adding a fixed child cost (Deaton and Muellbauer, 1986). However, the assumption of a fixed child 

cost, independent of income level, appears to be inappropriate for high-income countries.  

As the functional form of ߶(݊|ߛ) in (11) and (12), ߶(݊|ߛ) = ∑ ݊)ܫߛ = ݆)வଶ , which has a dummy variable  

for each household group, and ߶(݊|ߛ) = ݊ఊ, studied by Buhman et al. (1988), are used (denoted as ‘form 1’ 

and ‘form 2’, respectively). In form 2, ߛ corresponds to the size elasticity ߝ. The functional forms with 

separate parameters for adult and child members such as (݊ + ߟ ∙ ݊)ఌ are not used here because of data 

availability. Form 1 with separate parameters for each household-size group is expected to address this 

limitation to certain extent. In equation (12) for Ray’s method, a simple form, τ(݊|ߜ) =  ݊, is used as theߜ

intercept shifter variable for household size. The parameters ߙ, ߚ, ߜ and ߛ are estimated by the iterative 

non-linear SUR techniques.  

 

4.3. Differences in the Trends of the Gini Indices among the Estimation Procedures (the case of households with 

two-or-more persons) 

As appropriate equivalence scales may change over time, it seems desirable to use the current equivalence scales 

for the respective years if we have an appropriate procedure for estimating equivalence scales, rather than to use 

a fixed set of scales that are usually determined based on past investigations. From this point of view, 

measurement results derived from a fixed set of scales (which can also be regarded as a procedure for 

equivalence-scale estimation) should be compared with those derived from the current scales. Such comparisons 

are made in Figure 4 and in Tables 4 and 5. The procedures for obtaining the current scales using the Engel, 

Phipps and Garner, and Ray methods are denoted ‘Eng’, ‘PG’, and ‘Ray’, respectively, along with an attached 

symbol (‘1’ or ‘2’) depending on the functional form of ߶(݊|ߛ), e.g., ‘Eng1’ and ‘Ray2’. Another type of 

procedure, using the equivalence scale specification ߥ = ݊ఌ with a fixed size-elasticity value, is denoted ‘ε0’, 

‘ε0.5’, and ‘ε1’ depending on the elasticity value. Procedure ε0.5 is used by the OECD and was adopted for the 

official tabulation of the NSFIE.  

The Gini index e-i curves for 1989 – 2009 are presented in the upper-left panel of Figure 4. The minimum 

point of the e-i curve consistently moved to the right from 0.34 in 1989 to 0.36 in 1994, 0.42 in 1999, 0.45 in 

2004, and 0.47 in 2009. The size elasticity values estimated by the three procedures using form 2 of ߶(݊|ߛ) are 

listed in Table 4. All three estimates declined to below a half of 1989 for 20 years. The elasticity values derived 

from Eng2 are higher than those derived from PG2 and Ray2. The result confirms that the Engel method tends 

to yield higher equivalence scales. When comparing the elasticity values derived from PG2 and Ray2, higher 

values are obtained from the former than from the latters; however, the estimated Gini indices are similar, with 

differences of less than 0.001, as shown in Table 5. Ray2 continuously resulted in a size elasticity further from 

the minimum point of the e-i curve for 20 years, meaning that the more recent the date, the higher the estimated 

Gini index for equivalised income relative to that derived from the size elasticity corresponding the minimum 



point of the e-i curve. PG2 also placed the size elasticity further from the minimum point of the e-i curve 

continuously, and it created a similar effect on the income-inequality estimations from 1994 to 2009. In contrast, 

Eng2 made the size elasticity closer to the minimum point of the e-i curve from 1989 to 1994 and produced an 

opposite effect to the other procedures during that period. Among the procedures with fixed size elasticity, ε0.5 

and ε1 placed the (fixed) size elasticity closer to the minimum point of the e-i curve for 20 years, whereas ε0 

placed it further from the minimum point, consequently bringing about the corresponding effects. 

 

 

 

Fig. 4. The Gini Index e-i curve, Estimated Ginis for Equivalised Income and Equivalence Scales for Japan, 
Two-or-More-Person Households 

 

 

Table 4 
Size elasticity by the Estimation Procedure for Japan, Two-or-More-Person Households 

 

Year Eng2 PG2 Ray2 

1989 0.759 0.421 0.328 

1994 0.690 0.324 0.260 

1999 0.602 0.256 0.152 

2004 0.515 0.187 0.116 

2009 0.358 0.172 0.134 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
26

0.
27

0.
28

0.
29

0.
30

0.
31

0.
32

2009
1999
1989

1989 1994 1999 2004

0.
27

0.
28

0.
29

0.
30

Eng1
PG1
Ray1
Ray2
ε0
ε0.5

2 3 4 5 6 persons

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

2009
2004
1999
1994
1989

2 3 4 5 6 persons

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

2009
2004
1999
1994
1989

2009

Equivalence scales derived by PG1

The Gini index ei-curve Gini for equivalized income

Equivalence scales derived by Ray1



Table 5 
The Gini Indices for Equivalised Income for Japan, Two-or-More-Person Households 

 

Year  Eng1 PG1 Ray1 Eng2 PG2 Ray2 ε0 ε0.5 ε1 

1989 0.2783  0.2746  0.2747 0.2845 0.2740 0.2736 0.2785  0.2751  0.3003 

2009 0.2937  0.2963  0.2943 0.2894 0.2936 0.2947 0.2992  0.2891  0.3078 

Difference  0.0155  0.0217  0.0196 0.0049 0.0196 0.0211 0.0207  0.0139  0.0074 

 

Comparisons of the estimated Gini indices for equivalised income in Table 5 reveal that the estimates for 

1989 from PG2 and Ray2 were below that by ε0.5, with relatively small differences of less than 0.002, whereas 

PG2 and Ray2 produced higher estimates for 2009, with differences larger than 0.004. In the case of Eng2, the 

estimate for 1989 was approximately 0.01 larger than the estimate by ε0.5, and both estimates for 2009 were 

approximately the same. Procedure ε0.5 showed an increase of 0.0138 over 20 years, whereas Eng2, PG2 and 

Ray2 showed increases of 0.0049, 0.0196 and 0.0211, respectively, during the same period, that is, 0.0091 

smaller and 0.0056 and 0.0072 larger than the increase shown by ε0.5. The excess increases in the latter two 

procedures, caused by the shape of the e-i curves, are statistically significant.7 Strictly speaking, changes in the 

shape of the e-i curve other than the location of the minimum point may affect the estimations. For this reason, a 

counterfactual distribution analysis is performed, as follows: if the income distributions for each year were 

replaced by that for 1989, but the current size elasticity values were used, the 20-year increase in the Gini index 

would be estimated at -0.0109 by Eng2, 0.0012 by PG2 and 0.0022 by Ray2. Similarly, if the income 

distributions for each year were replaced by that for 2009, but the current size elasticity values were used, the 

corresponding figures would be -0.0057, 0.0045 and 0.0049, respectively (note that ε0.5 created no changes in 

these settings). In the counterfactual settings, the (excess) increases estimated by PG2 and Ray2 would be 

smaller because of exclusion of the e-i curve’s shape change effect, but the increases purely due to the changes 

in the size elasticity are statistically significant. In another setting in which the estimated size elasticity for 1989 

(0.421 for PG2 and 0.328 for Ray2) was used for 20 years instead of 0.5 (but the current income distributions 

were used for each year), the increases estimated by PG2 and Ray2 would still be significantly larger than those 

by ε0.421 and ε0.328, respectively. 

As shown in Table 5, similar results are obtained when form 1 of ߶(݊|ߛ) is used instead of form 2. The 

excess increases in PG1 and Ray1 would also be statistically significant in the counterfactual settings and in a 

setting of comparison with scales fixed using the starting-year values. Thus, the effects corresponding to the ⋃-shaped e-i curve are considered to work on the estimated Gini indices for equivalised income. It is notable 

that discrepancies caused by the different forms of ߶(݊|ߛ) are small in the case of Ray’s procedure, with 

differences of less than 0.001, as shown in Table 5 and in the upper-right panel of Figure 4. The equivalence 

scales for the individual household sizes, which are normalised to the unity of two-person households, estimated 

using PG1 and Ray1 are presented in the lower two panels of Figure 4. Both procedures showed declining 

tendencies in the equivalence scales, accompanied with the changes in the shape of the relationship between 

household size and equivalent scale from concave to convex.  

                                                  
7 Calculation of a 95% confidence interval is made using the standard deviation of the Gini index computed from the estimated parameters 
summed with 50,000 sets of multivariate normal noises generated from the error variance and covariance matrix of the parameters.  



In summary, substantial declines in the current equivalence scales were observed for Japan in recent years.8 

In combination with the effects of a ⋃-shaped e-i curve or corresponding effects in a more general equivalence 

scale specification, this trend has caused a procedure that have a fixed size elasticity at 0.5 (ε0.5) and those that 

use fixed scales estimated for an early year to have the tendency to underestimate increases in income inequality 

among households with two or more persons. 

 

4.4. Differences in the Trends of the Gini Indices among the Estimation Procedures (the case of all households) 

As the consumption structure of one-person households is much different from that of two-or-more person 

households, procedures for estimating equivalence scales based on consumption structure such as Eng, PG, and 

Ray may be inappropriate when one-person households are included in a study. In fact, PG1 yielded equivalence 

scales for one-person households that were higher than those for two-person households. Using Ray’s procedure, 

if the form of the intercept shifter for household size is modified to incorporate separate dummy variables for 

male and female single households, that is, τ൫݊|ߜ, ,௦ߜ ௦൯ߜ = ݊)ܫ݊ߜ ≥ 2) + ݊)൫ܫ௦ߜ = 1) ∧ ݎ݁݀݊݁݃) =݈݉ܽ݁)൯ + ݊)൫ܫ௦ߜ = 1) ∧ ݎ݁݀݊݁݃) = ݂݈݁݉ܽ݁)൯, with the additional constraints ∑ ௦ߜ = ∑ ௦ߜ = 0, then 

Ray1 yields equivalence scales for one-person households in the range of 0.5 to 1 of those for two-person 

households during 1989 – 2009 but slightly below 0.5 in 1984 and earlier. These results indicate that the derived 

scales are not fully reliable. Nevertheless, Ray’s procedure is applied here because, unlike Eng1 and PG1, the 

derived relative scales for one-person households exhibit an upward tendency, which is consistent with those for 

three or more person households exhibiting downward tendencies, and the relative scales for one-person 

households range between 0.5 and 1 from 1989 to 2009. 

The results for all households, including one-person households, are listed in Table 6. The minimum point of 

the Gini index e-i curve remained at nearly the same location; 0.48 in 1989 and 0.50 in 2009. The size elasticity 

derived by Ray2 showed a decrease from 0.540 in 1989 to 0.379 in 2009, but this decrease is smaller than the 

0.194 decrease found when one-person households are excluded. The size elasticity came close to the minimum 

point of the e-i curve from 1989 to 1999, whereas it was further from the minimum point after 1999. The 

20-year rise in the estimated Gini index for equivalised income was 0.0194, which is larger than the 0.0179 

increase estimated by ε0.5, but the gap is statistically insignificant. Although the estimate using Ray1 exhibited 

a rise of 0.0221, which is significantly larger than that by ε0.5, the excess increase is mainly caused by the 

different forms of ߶(݊|ߛ) used. The increase is not significantly larger than that estimated using the procedure 

with the scales fixed using 1989 values. Because of the reliability issues of the procedures, the appropriateness 

of equivalence scale specification ݊ఌ should not only be judged using the results for the present example when 

one-person households are included in a study; rather, a comparison with the results from Ray2 does not clearly 

deny the appropriateness of ε0.5 for calculating the Gini index for equivalised income distributions. However, 

when focusing on specific subgroups such as households with two or more persons, procedures with a fixed set 

of scales such as ε0.5 may cause biases in the measurement of income inequality within the specific groups and 
                                                  
8 The reason for substantial declines in equivalence scales for households with three or more persons relative to two-person households is 
not known at present. One speculation is that major retailers set the prices of large-sized products significantly lower relative to those of the 
same small-sized products relative to the prices set by traditional small-scale retailers. Major retailers operating supermarkets and volume 
sales specialty stores have substantially expanded their share in the retail market. As a consequence, economies of scale would have 
improved dramatically if the speculation were correct. However, no clear evidence has been found thus far. This issue needs to be 
investigated elsewhere because it is beyond the scope of this paper. 



in the identification of poverty. 

 

Table 6 
Equivalence Scales and the Gini Indices for Equivalised Income for Japan, All households 

 

Year 
  Relative scale* 

for one-person 

households 

  
Size**

elasticity 

 Gini 

  
Ray1 Ray2 ε0 ε0.5 ε1 

1989 0.548  0.540  0.2787 0.2808 0.2972 0.2804  0.3117 

2009 0.619  0.379  0.3008 0.3002 0.3219 0.2983  0.3267 

Difference          0.0221 0.0194  0.0247 0.0179  0.0151 

Notes: * Estimates using the Ray1 procedure, normalized to the scale for two-person households = 1. 

** Estimates using the Ray2 procedure. 

 

 

5. Concluding Remarks 

The ⋃-shaped relationship between size elasticity and index value (the ⋃-shaped e-i curve) suggested by 

Coulter et al. (1992) is common among high-income countries when the Gini index, MLD, or Theil are used. 

Among low-income countries, a non-⋃-shaped e-i curve and nearly J-shaped e-i curves with minimum points 

close to zero are found. However, as low- and middle-income countries contained in the LIS Wave VI database 

are few and are concentrated in specific regions, the generality of the shape of the curve should be further 

investigated in the future. Using the Mixture of Log-Normal distributions approach and its approximations, five 

factors for the convexity of the Gini index e-i curve are derived. The factors concern the range and shape of 

household size distribution, the average within-group income dispersions, the magnitude of fluctuation of 

within-group income dispersions, the magnitude of deviation from a log-linear relationship between household 

size and within-group average income, and the slope of the log-linear relationship. Disposable income 

distributions in the 34 LIS countries satisfy the five factors, and their e-i curves are shown to be convex. Thus, 

the ⋃-shaped e-i curve is empirically determined by the end-point condition, which corresponds to the 

approximate condition suggested by Coulter et al. (1992) for the generalised entropy measures and the FGT 

poverty measures. Although the author has no intention to deny the possibility that heavier upper-tails in the 

distributions of income or other economic variables may affect the shapes of the e-i curves for the respective 

size distributions, this empirical study shows the validity of the MLN approach for income distributions in many 

countries. 

The e-i curve is derived from the application of a specific class of equivalence scale: ߥ = ݊க. However, the 

example for Japan presented in this paper shows that effects similar to those of the ⋃-shaped e-i curve are 

observed when a more general class of equivalence scale is used. Although the author does not know whether 

similar phenomena have been arising in other countries, it is expected that this study on the relationship between 

size elasticity and index value and its impact will be useful for the measurement of income inequality and other 

economic inequality. 
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Annex 1. The MLN e-i Curve and Its Factor Decompositions by the Type I and II Approximations  
  Slovenia, 2004  Denmark, 2004  Sweden, 2005  Finland, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.2711 0.2313 0.2413 0.2888 0.2328 0.2460  0.2944 0.2392 0.2609 0.3114 0.2646 0.2820  
Original ߲ଶܩ ⁄ଶߝ߲  0.0861 0.2026 0.2528 0.0981 0.2926 0.3112  0.1016 0.3367 0.2902 0.1210 0.2732 0.2546  
MLN ߲ଶܩ ⁄ଶߝ߲  0.0850 0.2032 0.2423 0.0921 0.2851 0.2929  0.1022 0.3235 0.2784 0.1236 0.2677 0.2348  
  (46.3) (80.7) (86.3)  (37.6) (83.0) (84.4)   (39.3) (88.5) (79.6)  (51.6) (87.1) (79.5)  
Type I approximation 0.0413 0.2028 0.2401 0.0184 0.2842 0.2886  0.0417 0.3235 0.2675 0.0844 0.2680 0.2284  

(22.5) (80.5) (85.5) (7.5) (82.8) (83.2)  (16.0) (88.5) (76.5) (35.2) (87.2) (77.3)  
 I5 0.1835 0.2518 0.2809 0.2448 0.3434 0.3470  0.2603 0.3657 0.3497 0.2398 0.3075 0.2955  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (25.5) (91.3) (93.3) (20.6) (93.1) (88.4) (30.8) (95.8) (84.5) (46.2) (96.8) (87.7) 
  deducting I5 (-74.5) (-8.7) (-6.7) (-79.4) (-6.9) (-11.6) (-69.2) (-4.2) (-15.5) (-53.8) (-3.2) (-12.3) 
 Kσ (10.6) (-1.8) (-5.3) (5.1) (-1.7) (-1.2) (2.0) (-0.2) (-1.1) (3.8) (-0.6) (-2.0) 
 Kψ (-18.3) (-9.3) (-2.8) (-20.0) (-8.5) (-4.5) (-17.0) (-7.1) (-6.7) (-16.0) (-8.9) (-8.5) 
 I3 (4.7) (0.4) (0.3)  (1.9) (-0.2) (0.4)  (0.2) (-0.1) (-0.3)  (1.2) (-0.1) (0.0) 
Type II approximation 0.0353 0.1945 0.2450 0.0263 0.2857 0.2915  0.0494 0.3245 0.2781 0.0907 0.2684 0.2369  

(19.2) (77.2) (87.2) (10.7) (83.2) (84.0) (19.0) (88.7) (79.5) (37.8) (87.3) (80.2) 
 K0 (32.4) (91.8) (94.9) (29.2) (93.8) (90.5) (38.1) (96.3) (87.4) (54.4) (97.2) (90.3) 
  deducting I5 (-67.6) (-8.2) (-5.1) (-70.8) (-6.2) (-9.5) (-61.9) (-3.7) (-12.6) (-45.6) (-2.8) (-9.7) 
 Kσ (13.2) (-2.3) (-4.7) (5.0) (-1.5) (-0.1) (1.9) (-0.0) (-0.3) (3.3) (-0.4) (-0.8) 
 Kψ (-26.5) (-12.3) (-2.9)  (-23.5) (-9.1) (-6.4)  (-21.0) (-7.5) (-7.5)  (-20.0) (-9.5) (-9.3) 

 
  Czech, 2004  Austria, 2004  Luxembourg, 2004  Switzerland, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3038 0.2668 0.2744 0.3081 0.2691 0.3004  0.2958 0.2701 0.3110 0.2826 0.2704 0.3235  
Original ߲ଶܩ ⁄ଶߝ߲  0.0760 0.1809 0.2462 0.1318 0.3028 0.2530  0.1371 0.2930 0.2266 0.1845 0.2824 0.1657  
MLN ߲ଶܩ ⁄ଶߝ߲  0.0827 0.1879 0.2148 0.1289 0.2870 0.2482  0.1417 0.2771 0.2154 0.1721 0.2596 0.1669  
  (52.4) (88.1) (90.6)  (57.1) (93.9) (83.1)   (65.6) (97.2) (78.1)  (73.2) (93.4) (68.7)  
Type I approximation 0.0690 0.1882 0.2131 0.1109 0.2871 0.2414  0.1320 0.2772 0.1994 0.1680 0.2594 0.1498  

(43.7) (88.3) (89.9) (49.1) (94.0) (80.8)  (61.1) (97.2) (72.3) (71.4) (93.3) (61.7)  
 I5 0.1578 0.2132 0.2370 0.2258 0.3056 0.2989  0.2160 0.2853 0.2757 0.2351 0.2780 0.2429  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (50.5) (95.4) (93.4) (50.5) (98.5) (82.5) (65.9) (100.4) (75.7) (80.1) (99.9) (67.4) 
  deducting I5 (-49.5) (-4.6) (-6.6) (-49.5) (-1.5) (-17.5) (-34.1) (0.4) (-24.3) (-19.9) (-0.1) (-32.6) 
 Kσ (2.0) (-1.8) (-1.8) (2.5) (-2.5) (-1.8) (1.5) (-0.9) (-2.3) (0.0) (-2.6) (-2.5) 
 Kψ (-10.6) (-5.3) (-2.3) (-5.8) (-2.1) (-0.6) (-5.9) (-2.3) (-1.1) (-8.9) (-3.9) (-3.8) 
 I3 (1.8) (0.0) (0.6)  (1.9) (-0.0) (0.6)  (-0.5) (0.0) (-0.0)  (0.2) (-0.1) (0.6) 
Type II approximation 0.0698 0.1874 0.2151 0.1134 0.2867 0.2521  0.1354 0.2773 0.2163 0.1677 0.2622 0.1638  

(44.2) (87.9) (90.7) (50.2) (93.8) (84.3) (62.7) (97.2) (78.4) (71.3) (94.3) (67.4) 
 K0 (54.9) (95.6) (95.3) (54.7) (98.6) (86.1) (68.4) (100.4) (81.6) (82.1) (100.1) (74.8) 
  deducting I5 (-45.1) (-4.4) (-4.7) (-45.3) (-1.4) (-13.9) (-31.6) (0.4) (-18.4) (-17.9) (0.1) (-25.2) 
 Kσ (2.4) (-1.9) (-1.8) (2.7) (-2.4) (-1.0) (1.2) (-0.8) (-1.7) (0.0) (-2.6) (-2.5) 
 Kψ (-13.1) (-5.9) (-2.7)  (-7.2) (-2.4) (-0.9)  (-6.9) (-2.3) (-1.4)  (-8.9) (-3.9) (-3.8) 

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 
The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionܭ ఙ, andܭ



Annex 1. The MLN e-i Curve and Its Factor Decompositions by the Type I and II Approximations (Continued)  
  Netherland, 2004  France, 2005  Norway, 2004  Germany, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3042 0.2736 0.3114 0.3029 0.2807 0.3169  0.3305 0.2837 0.3019 0.3195 0.2876 0.3151  
Original ߲ଶܩ ⁄ଶߝ߲  0.1392 0.2982 0.2190 0.1373 0.2519 0.1944  0.0902 0.2861 0.2520 0.1250 0.2562 0.2029  
MLN ߲ଶܩ ⁄ଶߝ߲  0.1479 0.2635 0.2002 0.1348 0.2407 0.1958  0.0890 0.2269 0.2407 0.1230 0.2369 0.1982  
  (64.7) (92.2) (75.7)  (65.3) (93.1) (78.7)   (43.5) (84.0) (86.4)  (61.0) (94.2) (82.6)  
Type I approximation 0.1411 0.2635 0.1897 0.1272 0.2410 0.1856  0.0540 0.2275 0.2378 0.1100 0.2371 0.1932  

(61.8) (92.2) (71.7) (61.6) (93.2) (74.6)  (26.4) (84.2) (85.4) (54.5) (94.3) (80.5)  
 I5 0.2285 0.2857 0.2646 0.2064 0.2587 0.2488  0.2045 0.2703 0.2785 0.2017 0.2515 0.2400  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (72.8) (100.3) (75.1) (72.1) (100.2) (79.9) (48.4) (95.5) (92.5) (66.9) (99.3) (85.8) 
  deducting I5 (-27.2) (0.3) (-24.9) (-27.9) (0.2) (-20.1) (-51.6) (-4.5) (-7.5) (-33.1) (-0.7) (-14.2) 
 Kσ (-0.1) (-2.6) (-0.7) (0.6) (-1.4) (-1.6) (0.9) (-0.2) (-0.5) (0.4) (0.4) (-0.5) 
 Kψ (-11.8) (-5.3) (-4.0) (-11.3) (-5.6) (-4.1) (-22.4) (-10.9) (-6.7) (-11.8) (-5.3) (-4.2) 
 I3 (0.9) (-0.1) (1.3)  (0.2) (-0.1) (0.3)  (-0.5) (-0.2) (-0.0)  (-0.9) (-0.1) (-0.5) 
Type II approximation 0.1417 0.2632 0.1986 0.1290 0.2412 0.1968  0.0635 0.2285 0.2429 0.1173 0.2382 0.2021  

(62.0) (92.1) (75.0) (62.5) (93.3) (79.1) (31.1) (84.6) (87.2) (58.2) (94.7) (84.2) 
 K0 (75.9) (100.3) (81.2) (75.2) (100.2) (85.2) (55.7) (96.1) (94.6) (71.1) (99.4) (89.1) 
  deducting I5 (-24.1) (0.3) (-18.8) (-24.8) (0.2) (-14.8) (-44.3) (-3.9) (-5.4) (-28.9) (-0.6) (-10.9) 
 Kσ (-0.2) (-2.5) (-0.2) (0.2) (-1.1) (-1.0) (0.2) (-0.1) (0.4) (-0.3) (1.0) (0.4) 
 Kψ (-13.6) (-5.7) (-5.9)  (-12.9) (-5.9) (-5.1)  (-24.9) (-11.4) (-7.8)  (-12.6) (-5.6) (-5.3) 

 
  Hungary, 2005  Taiwan, 2005  South Korea, 2006   Belgium, 2000 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3240 0.2914 0.3101 0.3231 0.3054 0.3219  0.3274 0.3124 0.3286 0.3583 0.3176 0.3315  
Original ߲ଶܩ ⁄ଶߝ߲  0.0963 0.2170 0.2173 0.0879 0.1415 0.1514  0.0722 0.1276 0.1475 0.0638 0.2310 0.2670  
MLN ߲ଶܩ ⁄ଶߝ߲  0.1044 0.2058 0.1986 0.0875 0.1376 0.1511  0.0669 0.1194 0.1475 0.0792 0.2114 0.2167  
  (56.8) (88.8) (83.0)  (67.4) (86.9) (86.1)   (61.0) (83.8) (87.9)  (43.5) (90.2) (90.3)  
Type I approximation 0.0875 0.2065 0.1910 0.0836 0.1377 0.1505  0.0652 0.1195 0.1473 0.0401 0.2122 0.2114  

(47.6) (89.1) (79.8) (64.4) (87.0) (85.8)  (59.5) (83.8) (87.8) (22.0) (90.5) (88.1)  
 I5 0.1838 0.2317 0.2394 0.1299 0.1582 0.1755  0.1096 0.1425 0.1678 0.1822 0.2344 0.2399  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (66.9) (98.7) (89.2) (68.0) (97.7) (94.7) (62.6) (96.0) (98.3) (58.4) (97.5) (91.6) 
  deducting I5 (-33.1) (-1.3) (-10.8) (-32.0) (-2.3) (-5.3) (-37.4) (-4.0) (-1.7) (-41.6) (-2.5) (-8.4) 
 Kσ (0.2) (1.1) (0.0) (4.4) (-5.2) (-8.0) (4.4) (-7.2) (-10.4) (-4.0) (2.8) (2.5) 
 Kψ (-18.5) (-10.7) (-8.6) (-9.2) (-5.2) (-2.8) (-8.6) (-4.6) (-2.2) (-22.6) (-9.5) (-3.6) 
 I3 (-1.1) (0.1) (-0.9)  (1.2) (-0.3) (1.8)  (1.1) (-0.4) (2.1)  (-9.8) (-0.3) (-2.3) 
Type II approximation 0.0952 0.2069 0.2020 0.0821 0.1357 0.1528  0.0639 0.1178 0.1490 0.0722 0.2177 0.2240  

(51.8) (89.3) (84.4) (63.2) (85.8) (87.1) (58.2) (82.6) (88.8) (39.6) (92.9) (93.3) 
 K0 (71.7) (98.8) (92.6) (71.6) (97.8) (96.8) (65.6) (96.2) (99.9) (63.7) (97.7) (94.2) 
  deducting I5 (-28.3) (-1.2) (-7.4) (-28.4) (-2.2) (-3.2) (-34.4) (-3.8) (-0.1) (-36.3) (-2.3) (-5.8) 
 Kσ (0.1) (1.1) (0.3) (4.7) (-5.6) (-6.6) (5.6) (-7.5) (-8.5) (-5.4) (3.9) (4.6) 
 Kψ (-19.9) (-10.6) (-8.5)  (-13.1) (-6.5) (-3.1)  (-13.0) (-6.1) (-2.7)  (-18.7) (-8.7) (-5.5) 

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 
The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionܭ ఙ, andܭ



Annex 1. The MLN e-i Curve and Its Factor Decompositions by the Type I and II Approximations (Continued)  
  Australia, 2003  Canada, 2004  Ireland, 2004  Spain, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3397 0.3181 0.3401 0.3471 0.3204 0.3388  0.3490 0.3213 0.3346 0.3405 0.3215 0.3373  
Original ߲ଶܩ ⁄ଶߝ߲  0.1058 0.1803 0.1833 0.1002 0.1884 0.1925  0.0873 0.1687 0.2051 0.0851 0.1418 0.1611  
MLN ߲ଶܩ ⁄ଶߝ߲  0.0988 0.1761 0.1819 0.0992 0.1785 0.1859  0.0787 0.1666 0.1943 0.0863 0.1432 0.1561  
  (63.7) (89.2) (87.4)  (63.5) (89.1) (87.3)   (54.6) (87.4) (90.4)  (33.2) (39.2) (44.6)  
Type I approximation 0.0938 0.1765 0.1801 0.0944 0.1789 0.1841  0.0708 0.1672 0.1926 0.0841 0.1434 0.1548  

(60.4) (89.4) (86.5) (60.4) (89.3) (86.4)  (49.1) (87.7) (89.6) (32.3) (39.2) (44.3)  
 I5 0.1552 0.1974 0.2082 0.1563 0.2003 0.2130  0.1443 0.1907 0.2150 0.2603 0.3657 0.3497  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (67.5) (98.4) (92.8) (66.5) (98.0) (93.3) (62.5) (96.6) (95.8) (34.4) (42.0) (46.4) 
  deducting I5 (-32.5) (-1.6) (-7.2) (-33.5) (-2.0) (-6.7) (-37.5) (-3.4) (-4.2) (-65.6) (-58.0) (-53.6) 
 Kσ (2.0) (-3.2) (-4.1) (2.4) (-2.6) (-3.7) (1.7) (-0.7) (-1.9) (0.8) (-1.1) (-1.8) 
 Kψ (-10.0) (-5.5) (-2.9) (-9.7) (-5.9) (-3.9) (-15.3) (-8.1) (-4.5) (-3.1) (-1.7) (-0.8) 
 I3 (0.9) (-0.2) (0.8)  (1.3) (-0.1) (0.8)  (0.2) (-0.2) (0.1)  (0.2) (-0.1) (0.5) 
Type II approximation 0.0937 0.1756 0.1857 0.0945 0.1769 0.1880  0.0724 0.1664 0.1978 0.0848 0.1425 0.1577  

(60.3) (89.0) (89.2) (60.5) (88.3) (88.2) (50.2) (87.3) (92.0) (32.6) (39.0) (45.1) 
 K0 (71.3) (98.4) (95.5) (70.7) (98.1) (95.8) (66.9) (96.9) (98.1) (35.7) (42.1) (47.6) 
  deducting I5 (-28.7) (-1.6) (-4.5) (-29.3) (-1.9) (-4.2) (-33.1) (-3.1) (-1.9) (-64.3) (-57.9) (-52.4) 
 Kσ (1.8) (-3.1) (-2.7) (2.6) (-3.0) (-3.2) (1.3) (-0.6) (-1.2) (0.7) (-1.2) (-1.5) 
 Kψ (-12.7) (-6.4) (-3.6)  (-12.9) (-6.8) (-4.4)  (-18.0) (-8.9) (-4.9)  (-3.9) (-1.9) (-1.0) 

 
  Poland, 2004  Greece, 2004  Italy, 2004  Estonia, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3473 0.3292 0.3655 0.3528 0.3304 0.3372  0.3639 0.3476 0.3727 0.3915 0.3506 0.3455  
Original ߲ଶܩ ⁄ଶߝ߲  0.1326 0.2334 0.1865 0.0477 0.1205 0.1606  0.0912 0.1814 0.1764 0.0619 0.1427 0.2191  
MLN ߲ଶܩ ⁄ଶߝ߲  0.1212 0.2082 0.1857 0.0516 0.1161 0.1562  0.1001 0.1643 0.1644 0.0628 0.1552 0.2040  
  (69.3) (95.0) (83.0)  (54.4) (88.8) (96.9)   (73.4) (94.4) (88.0)  (46.4) (84.4) (95.0)  
Type I approximation 0.1205 0.2082 0.1769 0.0499 0.1163 0.1556  0.1001 0.1643 0.1604 0.0509 0.1552 0.2038  

(69.0) (95.0) (79.0) (52.6) (88.9) (96.5)  (73.4) (94.5) (85.9) (37.6) (84.4) (95.0)  
 I5 0.1747 0.2191 0.2238 0.0949 0.1308 0.1613  0.1364 0.1740 0.1869 0.1353 0.1840 0.2146  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (83.0) (100.8) (79.4) (58.6) (94.2) (100.4) (80.4) (100.9) (88.6) (45.5) (90.0) (99.6) 
  deducting I5 (-17.0) (0.8) (-20.6) (-41.4) (-5.8) (0.4) (-19.6) (0.9) (-11.4) (-54.5) (-10.0) (-0.4) 
 Kσ (-1.5) (0.3) (2.3) (1.4) (-1.2) (-2.1) (-1.0) (-2.9) (-1.6) (1.4) (-0.0) (-0.8) 
 Kψ (-12.9) (-6.2) (-2.8) (-7.7) (-4.0) (-2.2) (-6.4) (-3.6) (-2.7) (-9.4) (-5.5) (-3.9) 
 I3 (0.4) (0.1) (0.2)  (0.3) (-0.1) (0.4)  (0.3) (0.0) (1.5)  (0.1) (-0.1) (0.1) 
Type II approximation 0.1246 0.2085 0.1887 0.0509 0.1163 0.1575  0.1010 0.1638 0.1667 0.0580 0.1562 0.2054  

(71.3) (95.2) (84.3) (53.7) (88.9) (97.7) (74.0) (94.2) (89.2) (42.9) (84.9) (95.7) 
 K0 (84.9) (100.9) (86.8) (61.4) (94.5) (101.7) (82.2) (100.9) (93.7) (53.0) (91.0) (100.3) 
  deducting I5 (-15.1) (0.9) (-13.2) (-38.6) (-5.5) (1.7) (-17.8) (0.9) (-6.3) (-47.0) (-9.0) (0.3) 
 Kσ (-0.9) (0.2) (1.9) (1.4) (-1.3) (-1.9) (-0.9) (-2.9) (-1.2) (1.4) (-0.2) (-0.6) 
 Kψ (-12.7) (-6.0) (-4.3)  (-9.2) (-4.3) (-2.2)  (-7.4) (-3.9) (-3.3)  (-11.6) (-5.9) (-4.0) 

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 
The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionܭ ఙ, andܭ



Annex 1. The MLN e-i Curve and Its Factor Decompositions by the Type I and II Approximations (Continued)  
  UK, 2004  USA, 2004  Israel, 2005  Russia, 2000 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.3788 0.3567 0.3764 0.3882 0.3747 0.4033  0.3732 0.3770 0.4187 0.4534 0.4272 0.4273  
Original ߲ଶܩ ⁄ଶߝ߲  0.1068 0.1735 0.1660 0.1237 0.1756 0.1493  0.1312 0.1553 0.1336 0.0624 0.1052 0.1407  
MLN ߲ଶܩ ⁄ଶߝ߲  0.1070 0.1659 0.1569 0.1150 0.1659 0.1492  0.1236 0.1542 0.1339 0.0673 0.1115 0.1345  
  (70.5) (91.1) (85.2)  (74.4) (91.0) (82.2)   (77.9) (85.0) (72.8)  (66.2) (89.4) (96.1)  
Type I approximation 0.1044 0.1663 0.1547 0.1141 0.1662 0.1463  0.1248 0.1544 0.1167 0.0640 0.1121 0.1342  

(68.8) (91.3) (84.0) (73.9) (91.2) (80.6)  (78.6) (85.0) (63.5) (63.0) (89.9) (95.9)  
 I5 0.1518 0.1822 0.1841 0.1545 0.1822 0.1816  0.1588 0.1815 0.1839 0.1016 0.1247 0.1400  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (77.3) (99.4) (91.7) (83.0) (100.3) (88.5) (93.9) (99.9) (77.1) (70.0) (95.4) (99.9) 
  deducting I5 (-22.7) (-0.6) (-8.3) (-17.0) (0.3) (-11.5) (-6.1) (-0.1) (-22.9) (-30.0) (-4.6) (-0.1) 
 Kσ (0.9) (-1.2) (-1.9) (0.6) (-2.1) (-2.8) (0.5) (-2.4) (-3.0) (1.2) (0.3) (-0.4) 
 Kψ (-9.8) (-6.8) (-6.0) (-10.0) (-6.9) (-5.9) (-16.0) (-12.3) (-10.9) (-7.5) (-5.6) (-3.6) 
 I3 (0.3) (-0.1) (0.3)  (0.2) (-0.1) (0.7)  (-0.2) (0.2) (-0.3)  (-0.7) (-0.1) (0.0) 
Type II approximation 0.1067 0.1660 0.1602 0.1148 0.1658 0.1536  0.1230 0.1577 0.1381 0.0695 0.1126 0.1359  

(70.3) (91.1) (87.0) (74.3) (91.0) (84.6) (77.5) (86.9) (75.1) (68.4) (90.3) (97.1) 
 K0 (81.1) (99.4) (94.7) (85.8) (100.3) (93.1) (94.7) (100.8) (87.9) (75.6) (95.9) (100.8) 
  deducting I5 (-18.9) (-0.6) (-5.3) (-14.2) (0.3) (-6.9) (-5.3) (0.8) (-12.1) (-24.4) (-4.1) (0.8) 
 Kσ (0.6) (-1.2) (-1.2) (0.2) (-1.9) (-1.8) (-0.0) (-2.2) (-2.1) (0.6) (0.1) (0.1) 
 Kψ (-11.4) (-7.1) (-6.4)  (-11.7) (-7.4) (-6.7)  (-17.2) (-11.8) (-10.6)  (-7.8) (-5.7) (-3.8) 

 
  Uruguay, 2004  Mexico, 2004  Brazil, 2006  Guatemala, 2006 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.4485 0.4505 0.4843 0.4673 0.4732 0.5048  0.4960 0.5043 0.5351 0.4982 0.5115 0.5491  
Original ߲ଶܩ ⁄ଶߝ߲  0.1075 0.1312 0.1121 0.0877 0.1050 0.0905  0.0805 0.0942 0.0828 0.0978 0.0995 0.0763  
MLN ߲ଶܩ ⁄ଶߝ߲  0.1052 0.1290 0.1149 0.0897 0.0988 0.0908  0.0811 0.0887 0.0803 0.0939 0.0929 0.0721  
  (85.5) (91.4) (79.5) (91.8) (92.2) (80.7)   (91.2) (91.3) (79.7)  (96.4) (92.6) (74.1)  
Type I approximation 0.1063 0.1290 0.1020 0.0898 0.0991 0.0896  0.0815 0.0889 0.0763 0.0944 0.0922 0.0685  

(86.4) (91.5) (70.5) (92.0) (92.5) (79.6)  (91.6) (91.5) (75.8) (96.8) (91.9) (70.3)  
 I5 0.1230 0.1411 0.1446 0.0977 0.1071 0.1125  0.0890 0.0971 0.1007 0.0975 0.1003 0.0974  

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) (100.0) (100.0) (100.0)  
 K0 (95.8) (100.2) (80.8) (96.9) (100.4) (86.1) (99.1) (99.5) (84.2) (99.7) (96.6) (76.6) 
  deducting I5 (-4.2) (0.2) (-19.2) (-3.1) (0.4) (-13.9) (-0.9) (-0.5) (-15.8) (-0.3) (-3.4) (-23.4) 
 Kσ (1.1) (0.9) (0.5) (0.1) (-4.9) (-7.4) (0.7) (-1.2) (-2.5) (0.4) (-2.3) (-4.6) 
 Kψ (-11.0) (-9.1) (-9.0) (-4.6) (-4.0) (-3.3) (-8.1) (-7.0) (-6.3) (-2.9) (-2.6) (-2.2) 
 I3 (0.4) (-0.5) (-1.7)  (-0.3) (1.0) (4.3)  (0.0) (0.2) (0.4)  (-0.3) (0.2) (0.5) 
Type II approximation 0.1069 0.1323 0.1215 0.0887 0.0989 0.0964  0.0813 0.0908 0.0877 0.0939 0.0945 0.0799  

(86.9) (93.8) (84.1) (90.8) (92.3) (85.7) (91.4) (93.5) (87.1) (96.4) (94.2) (82.1) 
 K0 (96.3) (101.3) (91.5) (97.3) (101.3) (95.1) (99.1) (101.3) (95.4) (99.7) (98.9) (89.4) 
  deducting I5 (-3.7) (1.3) (-8.5) (-2.7) (1.3) (-4.9) (-0.9) (1.3) (-4.6) (-0.3) (-1.1) (-10.6) 
 Kσ (1.2) (0.6) (0.3) (-0.4) (-4.4) (-5.8) (0.5) (-0.9) (-1.9) (0.6) (-1.1) (-3.3) 
 Kψ (-10.6) (-8.1) (-7.8)  (-6.0) (-4.6) (-3.7)  (-8.3) (-6.9) (-6.4)  (-3.9) (-3.7) (-4.1) 

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 
The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionܭ ఙ, andܭ



Annex 1. The MLN e-i Curve and Its Factor Decompositions by the Type I and II Approximations (Continued)  
  Peru, 2004  Columbia, 2004 
  ε=0 ε=0.5 ε=1  ε=0 ε=0.5 ε=1 
Original Gini 0.5302 0.5251 0.5453  0.5259 0.5339 0.5663 
Original ߲ଶܩ ⁄ଶߝ߲  0.0804 0.1038 0.1055  0.0863 0.1014 0.0787 
MLN ߲ଶܩ ⁄ଶߝ߲  0.0791 0.0982 0.1027  0.0828 0.0924 0.0847 
  (90.5) (98.8) (93.7)   (95.6) (95.9) (83.2) 
Type I approximation 0.0795 0.0985 0.1022  0.0829 0.0927 0.0827 

(91.0) (99.0) (93.2)  (95.7) (96.2) (81.2) 
 I5 0.0874 0.0994 0.1097  0.0866 0.0963 0.1019 

(100.0) (100.0) (100.0)  (100.0) (100.0) (100.0) 
 K0 (87.9) (100.8) (96.1) (97.8) (100.7) (86.0)
  deducting I5 (-12.1) (0.8) (-3.9) (-2.2) (0.7) (-14.0)
 Kσ (0.8) (-2.6) (-5.0) (0.8) (-3.0) (-5.5)
 Kψ (1.2) (0.3) (-0.3) (-2.7) (-2.4) (-2.1)
 I3 (1.0) (0.4) (2.4)  (-0.2) (0.9) (2.8)
Type II approximation 0.0798 0.0980 0.1072  0.0825 0.0937 0.0924 

(91.3) (98.5) (97.8) (95.3) (97.2) (90.7)
 K0 (90.0) (100.8) (101.1) (98.0) (102.2) (97.1)
  deducting I5 (-10.0) (0.8) (1.1) (-2.0) (2.2) (-2.9)
 Kσ (0.6) (-2.5) (-3.5) (0.5) (-2.3) (-4.0)
 Kψ (0.8) (0.2) (0.2)  (-3.3) (-2.7) (-2.4)

Notes: Figures in parentheses () are the ratios to ܫହ (in percent). 
The approximations of ܭ, ,ܭ ట in the type II approximation are denotedܭ ఙ, andܭ  .ట, ignoring distinctionܭ ఙ, andܭ

 

 

  



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation  
  Slovenia, 2004  Denmark, 2004  Sweden, 2005  Finland, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.636 0.685 0.736 0.616 0.670 0.721 0.577 0.631 0.681 0.561 0.628 0.691  ߶෨ 0.3137 0.3702 0.3545 0.2894 0.3626 0.3439 0.2902 0.3629 0.3320 0.3035 0.3626 0.3377  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3759 0.3821 0.3805  0.3731 0.3820 0.3801  0.3721 0.3811 0.3777  0.3691 0.3771 0.3737  

RMS of σn (ߪത) 0.3906 0.4000 0.4112 0.3865 0.3946 0.4036 0.3989 0.4080 0.4170 0.4437 0.4564 0.4693  ߪധ 0.3937 0.3982 0.4034 0.3867 0.3909 0.3957 0.4012 0.4057 0.4105 0.4465 0.4529 0.4596  ߪଶധധധ 0.1540 0.1574 0.1616 0.1481 0.1513 0.1552 0.1600 0.1638 0.1677 0.1978 0.2034 0.2096  log ݊തതതതതത 1.2609 1.1726 1.0684  1.0831 0.9596 0.8230  1.0385 0.9021 0.7524  1.0904 0.9599 0.8204  VAR(log ݊) 0.1629 0.1915 0.2260 0.2313 0.2617 0.2823 0.2544 0.2891 0.3057 0.2495 0.2715 0.2843  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-31.0} {-33.4} {-32.0} {-28.2} {-20.5} {-9.1} {-31.3} {-19.0} {-2.8} {-19.8} {-13.6} {-4.3} 

Centred 4th moment of log ݊ {65.8} {70.4} {70.2} {65.8} {63.5} {59.4} {66.4} {61.4} {56.7} {69.4} {67.8} {63.9} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {49.5} {51.2} {47.6} {42.7} {37.3} {31.2} {40.9} {32.4} {26.1} {44.5} {40.7} {35.5} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {76.4} {76.5} {67.0} {62.7} {51.0} {41.4} {59.3} {44.4} {37.0} {67.5} {58.3} {50.6} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {107.5} {91.7} {63.4} {60.8} {35.2} {22.3} {51.9} {24.9} {17.7} {62.5} {41.8} {35.2} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {1.90} {1.82} {1.73}  {2.08} {1.62} {1.24}  {1.03} {0.81} {0.63}  {1.50} {1.27} {1.04} VAR൫߰൯ {2.48} {2.80} {2.86} {3.39} {3.42} {3.28} {4.17} {3.97} {3.71} {4.40} {4.49} {4.31} VAR ቀ൫߰ − ߰൯ଶቁ {0.092} {0.055} {0.025}  {0.041} {0.029} {0.032}  {0.053} {0.057} {0.070}  {0.087} {0.071} {0.084} COR(log ݊ , ଶ) -0.8623 -0.8660 -0.8635 -0.5672 -0.6629 -0.7147 -0.8623 -0.8660 -0.8635 -0.9106 -0.9257 -0.9335  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.2656 0.0505 -0.2686 0.4657 0.2757 0.0056 0.2656 0.0505 -0.2686 0.2874 0.1254 -0.0790  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.5709 -0.6596 -0.7683 -0.2494 -0.3072 -0.4011 -0.5709 -0.6596 -0.7683 -0.6176 -0.6797 -0.7502  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.3654 0.2164 -0.2220  0.3952 0.3898 0.2188  0.3654 0.2164 -0.2220  0.3743 0.2418 -0.0434  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8519 -0.9229 -0.9797 -0.8896 -0.9322 -0.9788 -0.8519 -0.9229 -0.9797 -0.9474 -0.9705 -0.9920  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.8551 0.9186 0.9022 0.9452 0.7544 0.3799 0.7178 0.3651 0.1197 0.9242 0.7835 0.4946  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.3761 0.1846 -0.1036  0.4262 0.2649 0.0193  0.3761 0.1846 -0.1036  0.3342 0.1564 -0.0816  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Condtinued)  
  Czcch, 2004  Austria, 2004  Luxembourg, 2004  Switzerland, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.605 0.645 0.681 0.553 0.567 0.586 0.450 0.472 0.495 0.352 0.395 0.438  ߶෨ 0.3228 0.3701 0.3538 0.3189 0.3722 0.3311 0.3374 0.3741 0.3180 0.3474 0.3674 0.3031  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3706 0.3769 0.3751  0.3691 0.3760 0.3706  0.3716 0.3759 0.3683  0.3739 0.3759 0.3665  

RMS of σn (ߪത) 0.4695 0.4683 0.4683 0.4757 0.4830 0.4920 0.4797 0.4872 0.4951 0.4683 0.4816 0.4953  ߪധ 0.4681 0.4676 0.4676 0.4770 0.4806 0.4851 0.4806 0.4845 0.4887 0.4678 0.4744 0.4815  ߪଶധധധ 0.2188 0.2183 0.2183 0.2267 0.2301 0.2344 0.2301 0.2339 0.2380 0.2172 0.2233 0.2301  log ݊തതതതതത 1.1635 1.0756 0.9726  1.1564 1.0268 0.8790  1.1832 1.0635 0.9228  1.0473 0.9276 0.7953  VAR(log ݊) 0.1618 0.1904 0.2215 0.2388 0.2790 0.3097 0.2176 0.2612 0.2996 0.2239 0.2538 0.2728  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-32.6} {-32.0} {-27.7} {-34.4} {-26.8} {-14.1} {-39.3} {-32.9} {-20.9} {-29.3} {-20.3} {-8.2} 

Centred 4th moment of log ݊ {60.9} {62.9} {61.3} {73.3} {70.5} {64.6} {73.3} {70.8} {64.7} {61.1} {58.9} {55.7} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {44.8} {43.8} {39.1} {49.4} {42.6} {33.7} {51.6} {44.7} {34.8} {38.7} {33.5} {28.4} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {63.7} {59.5} {49.5} {78.3} {62.4} {48.3} {82.2} {66.4} {49.3} {54.7} {43.5} {35.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {77.2} {59.8} {37.9} {89.5} {49.6} {26.1} {102.3} {60.9} {29.3} {50.4} {27.4} {15.9} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.59} {0.46} {0.38}  {0.71} {0.63} {0.55}  {0.72} {0.51} {0.37}  {1.66} {1.39} {1.13} VAR൫߰൯ {2.20} {2.05} {1.80} {1.45} {1.27} {1.15} {0.67} {0.72} {0.73} {2.71} {2.75} {2.71} VAR ቀ൫߰ − ߰൯ଶቁ {0.022} {0.014} {0.010}  {0.002} {0.001} {0.001}  {0.003} {0.002} {0.001}  {0.028} {0.020} {0.020} COR(log ݊ , ଶ) 0.2808 0.1100 -0.1032 -0.6466 -0.7741 -0.8574 -0.8200 -0.8537 -0.8873 -0.9469 -0.9474 -0.9447  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.4056 0.5744 0.7429 0.6724 0.5660 0.3567 0.1959 0.1849 0.0875 0.3818 0.1983 -0.0530  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.1206 -0.2366 -0.3482 -0.5038 -0.5751 -0.6379 -0.6161 -0.7266 -0.8451 -0.6406 -0.7087 -0.7982  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.3364 0.5036 0.6927  0.5937 0.6376 0.4889  0.3130 0.3061 0.1413  0.4503 0.3637 0.0494  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8040 -0.8101 -0.8312 -0.2619 -0.4640 -0.6459 -0.7390 -0.7922 -0.8701 -0.8408 -0.9003 -0.9557  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.7339 0.6723 0.4888 0.7940 0.5424 -0.0537 0.9637 0.7999 0.2646 0.9317 0.6330 0.1639  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.4308 0.3496 0.2264  0.4234 0.4057 0.2449  0.5318 0.4272 0.2369  0.4478 0.3004 0.0546  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Netherland, 2004  France, 2005  Norway, 2004  Germany, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.411 0.462 0.512 0.432 0.481 0.529 0.576 0.648 0.720 0.502 0.549 0.596  ߶෨ 0.3363 0.3681 0.3149 0.3369 0.3684 0.3219 0.3041 0.3543 0.3390 0.3243 0.3663 0.3316  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3711 0.3752 0.3679  0.3701 0.3741 0.3675  0.3651 0.3732 0.3709  0.3669 0.3726 0.3675  

RMS of σn (ߪത) 0.4823 0.4859 0.4914 0.4929 0.5003 0.5083 0.4814 0.4907 0.5000 0.5062 0.5171 0.5270  ߪധ 0.4825 0.4844 0.4871 0.4946 0.4982 0.5023 0.4822 0.4869 0.4917 0.5050 0.5107 0.5161  ߪଶധധധ 0.2321 0.2339 0.2366 0.2441 0.2477 0.2517 0.2313 0.2357 0.2405 0.2531 0.2589 0.2645  log ݊തതതതതത 1.0977 0.9730 0.8336  1.1276 1.0121 0.8812  1.0945 0.9713 0.8336  1.0140 0.8962 0.7677  VAR(log ݊) 0.2318 0.2658 0.2894 0.2143 0.2474 0.2745 0.2293 0.2626 0.2857 0.2221 0.2479 0.2642  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-31.2} {-22.9} {-10.5} {-31.3} {-25.4} {-15.5} {-31.0} {-22.6} {-10.4} {-25.5} {-17.9} {-7.0} 

Centred 4th moment of log ݊ {66.8} {64.1} {59.7} {66.3} {65.0} {61.0} {65.5} {63.1} {59.2} {61.3} {58.9} {55.1} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {43.7} {37.5} {30.7} {44.8} {40.2} {33.6} {42.6} {36.9} {30.6} {39.1} {34.2} {28.7} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {65.2} {52.1} {41.4} {67.0} {56.0} {44.3} {63.4} {50.8} {40.5} {52.4} {42.3} {35.1} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {66.2} {37.1} {21.4} {73.1} {45.0} {25.1} {64.2} {35.9} {20.4} {43.7} {25.1} {17.4} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.63} {0.54} {0.47}  {0.51} {0.47} {0.41}  {1.25} {1.04} {0.84}  {1.72} {1.36} {1.05} VAR൫߰൯ {3.21} {3.34} {3.29} {3.05} {2.97} {2.79} {6.77} {7.05} {7.01} {3.18} {3.44} {3.50} VAR ቀ൫߰ − ߰൯ଶቁ {0.043} {0.022} {0.020}  {0.050} {0.036} {0.034}  {0.166} {0.110} {0.117}  {0.034} {0.020} {0.020} COR(log ݊ , ଶ) -0.3066 -0.4881 -0.6363 -0.9187 -0.9205 -0.9158 -0.7312 -0.7215 -0.6837 -0.7475 -0.7101 -0.6445  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.6542 0.6352 0.4942 0.4302 0.2822 0.0734 0.2608 0.0369 -0.2508 0.0817 -0.1646 -0.4523  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.3276 -0.3775 -0.4144 -0.5967 -0.6302 -0.6919 -0.3375 -0.3585 -0.4263 -0.3035 -0.3501 -0.4467  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.4967 0.5997 0.5533  0.4247 0.3746 0.1924  0.2306 0.1377 -0.0958  0.1491 0.0097 -0.2617  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8608 -0.9120 -0.9699 -0.8595 -0.8938 -0.9427 -0.8471 -0.8992 -0.9561 -0.8191 -0.8767 -0.9292  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.9285 0.7435 0.2129 0.9598 0.8084 0.4576 0.9243 0.6608 0.1673 0.7789 0.4418 -0.0599  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.4778 0.3170 0.0657  0.4282 0.3120 0.1163  0.4718 0.3243 0.0842  0.4671 0.2939 0.0373  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Hungary, 2005  Taiwan, 2005  South Korea, 2006  Belgium, 2000 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.487 0.565 0.636 0.545 0.594 0.641 0.576 0.624 0.665 0.543 0.602 0.661  ߶෨ 0.3246 0.3609 0.3338 0.3395 0.3643 0.3460 0.3411 0.3636 0.3499 0.3134 0.3548 0.3336  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3667 0.3722 0.3683  0.3660 0.3694 0.3661  0.3647 0.3678 0.3649  0.3604 0.3668 0.3624  

RMS of σn (ߪത) 0.5079 0.5119 0.5153 0.5334 0.5483 0.5663 0.5481 0.5656 0.5872 0.5604 0.5866 0.6076  ߪധ 0.5082 0.5103 0.5121 0.5349 0.5414 0.5496 0.5479 0.5554 0.5651 0.5265 0.5390 0.5502  ߪଶധധധ 0.2579 0.2601 0.2619 0.2833 0.2900 0.2985 0.2960 0.3039 0.3142 0.2646 0.2770 0.2887  log ݊തതതതതത 1.2061 1.0974 0.9744  1.4327 1.3553 1.2649  1.2528 1.1835 1.0974  1.1300 1.0128 0.8794  VAR(log ݊) 0.2035 0.2317 0.2596 0.1447 0.1663 0.1971 0.1245 0.1539 0.1917 0.2164 0.2518 0.2799  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-26.5} {-24.9} {-19.9} {-24.0} {-31.3} {-36.0} {-40.6} {-43.8} {-43.0} {-33.5} {-26.4} {-15.2} 

Centred 4th moment of log ݊ {67.5} {69.6} {67.5} {65.0} {72.4} {77.2} {63.1} {68.4} {69.2} {65.9} {64.1} {60.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {47.2} {46.4} {41.6} {50.5} {55.8} {57.5} {50.7} {53.0} {50.1} {44.3} {38.9} {32.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {73.3} {68.0} {57.2} {81.8} {94.0} {96.3} {75.6} {77.8} {69.7} {67.1} {55.0} {42.9} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {90.3} {65.9} {41.3} {137.0} {148.8} {135.7} {110.6} {101.6} {76.0} {74.5} {44.5} {23.6} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.33} {0.24} {0.17}  {3.73} {3.77} {3.52}  {6.02} {5.52} {4.78}  {12.93} {10.08} {8.10} VAR൫߰൯ {6.57} {5.99} {5.07} {4.50} {4.29} {3.68} {4.03} {3.36} {2.59} {4.62} {4.91} {5.02} VAR ቀ൫߰ − ߰൯ଶቁ {0.187} {0.148} {0.151}  {0.031} {0.013} {0.009}  {0.031} {0.027} {0.027}  {0.130} {0.089} {0.073} COR(log ݊ , ଶ) -0.7377 -0.6434 -0.5073 -0.9072 -0.9249 -0.9357 -0.9294 -0.9511 -0.9648 -0.6347 -0.5155 -0.3562  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ -0.2205 -0.3749 -0.5743 0.5603 0.5389 0.4966 0.6802 0.6483 0.6039 -0.0290 -0.2919 -0.5786  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.3072 -0.2826 -0.2754 -0.6437 -0.6248 -0.6213 -0.6576 -0.6850 -0.7234 -0.1079 -0.0443 -0.0379  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ -0.1121 -0.2603 -0.4901  0.4222 0.4293 0.4369  0.5540 0.5906 0.6216  -0.0999 -0.2493 -0.4543  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.9005 -0.9062 -0.9243 -0.6201 -0.6408 -0.6183 -0.7149 -0.6739 -0.6443 -0.8014 -0.8559 -0.9219  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.8296 0.7600 0.5587 0.7080 0.6289 0.2334 0.7619 0.4815 0.2250 0.9426 0.7284 0.2603  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.3649 0.2469 0.0781  0.3751 0.2873 0.1815  0.3732 0.3024 0.2107  0.5062 0.3965 0.1962  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Australia, 2003  Canada, 2004  Ireland, 2004  Spain, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.531 0.576 0.623 0.542 0.591 0.640 0.548 0.613 0.674 0.524 0.557 0.590  ߶෨ 0.3322 0.3629 0.3399 0.3282 0.3614 0.3407 0.3260 0.3589 0.3416 0.3400 0.3646 0.3442  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3623 0.3670 0.3627  0.3607 0.3663 0.3627  0.3606 0.3662 0.3631  0.3625 0.3663 0.3627  

RMS of σn (ߪത) 0.5589 0.5720 0.5874 0.5694 0.5752 0.5836 0.5666 0.5746 0.5832 0.5754 0.5816 0.5896  ߪധ 0.5619 0.5680 0.5755 0.5723 0.5748 0.5786 0.5672 0.5712 0.5755 0.5776 0.5805 0.5842  ߪଶധധധ 0.3138 0.3206 0.3290 0.3269 0.3297 0.3339 0.3205 0.3249 0.3299 0.3330 0.3363 0.3405  log ݊തതതതതത 1.1792 1.0782 0.9611  1.1770 1.0725 0.9520  1.3166 1.2189 1.1013  1.2408 1.1601 1.0648  VAR(log ݊) 0.1857 0.2185 0.2493 0.1927 0.2253 0.2558 0.1775 0.2146 0.2561 0.1486 0.1752 0.2067  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-34.7} {-30.0} {-22.2} {-33.1} {-28.9} {-21.3} {-37.9} {-37.4} {-32.6} {-32.0} {-33.5} {-31.9} 

Centred 4th moment of log ݊ {61.0} {62.2} {60.9} {63.5} {64.4} {62.3} {69.7} {73.6} {72.7} {59.8} {64.1} {65.1} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {42.4} {40.4} {36.0} {44.2} {41.8} {36.7} {52.0} {52.1} {47.1} {45.0} {46.6} {44.5} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {65.0} {58.1} {47.3} {67.6} {60.0} {48.6} {88.3} {85.5} {72.3} {66.7} {67.7} {61.0} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {81.9} {57.5} {32.6} {83.2} {57.6} {32.6} {138.4} {112.5} {72.0} {92.1} {81.2} {58.9} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {1.55} {1.47} {1.33}  {0.43} {0.54} {0.67}  {1.21} {0.99} {0.78}  {0.60} {0.64} {0.66} VAR൫߰൯ {2.62} {2.81} {2.87} {3.42} {3.29} {3.10} {5.27} {4.85} {4.13} {1.59} {1.50} {1.41} VAR ቀ൫߰ − ߰൯ଶቁ {0.063} {0.037} {0.019}  {0.071} {0.050} {0.041}  {0.121} {0.077} {0.062}  {0.028} {0.023} {0.016} COR(log ݊ , ଶ) -0.9242 -0.9474 -0.9623 -0.6573 -0.7381 -0.8034 -0.6925 -0.6780 -0.6664 -0.8128 -0.8619 -0.9011  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.6497 0.5413 0.3953 0.8807 0.8688 0.7972 0.2105 0.1616 0.1098 0.6723 0.6766 0.6532  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.6826 -0.7175 -0.7718 -0.9127 -0.9202 -0.8969 -0.3632 -0.4183 -0.5053 -0.7396 -0.7805 -0.8170  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.5762 0.5844 0.5390  0.9146 0.9191 0.8605  0.2580 0.2861 0.2947  0.6329 0.6752 0.6978  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8395 -0.8754 -0.9231 -0.8118 -0.8457 -0.8928 -0.8021 -0.8002 -0.8146 -0.7858 -0.8047 -0.8298  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.9471 0.9582 0.7639 0.9348 0.8872 0.6279 0.7657 0.6534 0.3993 0.8958 0.8678 0.7349  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.5677 0.4807 0.3287  0.4455 0.3753 0.2382  0.4586 0.3683 0.2390  0.4525 0.4416 0.3851  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Poland, 2004  Greece, 2004  Italy, 2004  Estonia, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.346 0.403 0.462 0.623 0.661 0.689 0.402 0.442 0.475 0.720 0.767 0.806  ߶෨ 0.3418 0.3586 0.3130 0.3329 0.3600 0.3516 0.3417 0.3578 0.3256 0.3035 0.3497 0.3533  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3611 0.3644 0.3567  0.3596 0.3644 0.3628  0.3576 0.3606 0.3543  0.3510 0.3605 0.3610  

RMS of σn (ߪത) 0.5996 0.5911 0.5826 0.5916 0.5945 0.5983 0.6314 0.6313 0.6335 0.6126 0.6162 0.6203  ߪധ 0.5947 0.5906 0.5865 0.5933 0.5947 0.5966 0.6299 0.6299 0.6310 0.6151 0.6169 0.6189  ߪଶധധധ 0.3529 0.3480 0.3432 0.3519 0.3535 0.3557 0.3958 0.3957 0.3972 0.3781 0.3803 0.3829  log ݊തതതതതത 1.2905 1.1732 1.0351  1.1788 1.1111 1.0247  1.1442 1.0459 0.9275  1.1919 1.0863 0.9623  VAR(log ݊) 0.2150 0.2552 0.2965 0.1196 0.1528 0.1935 0.1778 0.2165 0.2561 0.1940 0.2295 0.2658  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-34.9} {-33.0} {-26.0} {-48.3} {-48.9} {-44.7} {-40.5} {-37.4} {-28.7} {-34.1} {-32.4} {-25.5} 

Centred 4th moment of log ݊ {76.8} {79.2} {75.4} {64.5} {66.6} {64.2} {68.8} {67.3} {61.6} {70.7} {71.2} {66.8} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {55.3} {53.6} {45.8} {52.6} {51.3} {44.8} {51.1} {45.7} {36.0} {51.3} {48.2} {40.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {96.9} {87.3} {69.4} {73.4} {69.7} {57.4} {73.6} {61.9} {46.0} {78.8} {69.4} {54.4} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {142.5} {99.7} {54.9} {97.3} {81.7} {55.0} {87.5} {58.3} {30.3} {98.5} {68.1} {38.1} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.60} {0.46} {0.34}  {0.15} {0.15} {0.16}  {0.70} {0.55} {0.46}  {0.15} {0.13} {0.11} VAR൫߰൯ {3.20} {3.55} {3.58} {3.99} {2.88} {2.01} {3.23} {2.37} {1.67} {3.12} {2.46} {1.82} VAR ቀ൫߰ − ߰൯ଶቁ {0.117} {0.052} {0.017}  {0.194} {0.145} {0.097}  {0.034} {0.038} {0.036}  {0.027} {0.031} {0.035} COR(log ݊ , ଶ) 0.8422 0.8383 0.8450 -0.9035 -0.9287 -0.9488 0.1307 -0.0965 -0.3234 -0.7317 -0.7669 -0.8021  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ -0.0100 0.0121 0.0680 0.7245 0.7627 0.7569 0.5820 0.7113 0.8014 0.3150 0.3078 0.2643  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ 0.5273 0.6370 0.7769 -0.8123 -0.8425 -0.8716 -0.1819 -0.2784 -0.3450 -0.5348 -0.6176 -0.7120  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ -0.2093 -0.1885 -0.0619  0.6752 0.7338 0.7700  0.4211 0.5746 0.7396  0.3866 0.4269 0.3946  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8219 -0.8501 -0.8924 -0.5861 -0.5376 -0.5088 -0.6835 -0.6937 -0.7366 -0.7962 -0.7981 -0.8237  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.8638 0.8950 0.7023 0.2678 0.1637 0.0924 0.5739 0.4261 0.3586 0.7103 0.5675 0.4687  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.5901 0.4648 0.2776  0.2415 0.1902 0.1158  0.2652 0.1863 0.0569  0.2958 0.1887 0.0296  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  UK, 2004  USA, 2004  Israel, 2005  Russia, 2000 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.487 0.547 0.603 0.408 0.471 0.534 0.197 0.303 0.397 0.662 0.697 0.739  ߶෨ 0.3279 0.3538 0.3320 0.3326 0.3497 0.3206 0.3413 0.3381 0.2964 0.3108 0.3370 0.3336  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3537 0.3587 0.3541  0.3509 0.3542 0.3474  0.3547 0.3539 0.3434  0.3345 0.3411 0.3400  

RMS of σn (ߪത) 0.6367 0.6438 0.6520 0.6717 0.6818 0.6938 0.6578 0.6640 0.6717 0.7742 0.7819 0.7895  ߪധ 0.6394 0.6429 0.6469 0.6749 0.6797 0.6856 0.6571 0.6604 0.6643 0.7766 0.7805 0.7844  ߪଶധധധ 0.4083 0.4127 0.4178 0.4546 0.4610 0.4688 0.4304 0.4348 0.4400 0.6021 0.6081 0.6142  log ݊തതതതതത 1.1039 0.9930 0.8707  1.1902 1.0721 0.9406  1.4193 1.3029 1.1675  1.2927 1.1969 1.0878  VAR(log ݊) 0.2094 0.2341 0.2537 0.2217 0.2504 0.2745 0.2161 0.2507 0.2915 0.1795 0.2042 0.2327  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-24.5} {-19.6} {-12.1} {-26.4} {-21.9} {-14.3} {-27.7} {-30.8} {-28.4} {-24.8} {-26.3} {-25.5} 

Centred 4th moment of log ݊ {61.4} {61.7} {59.8} {67.1} {68.0} {66.0} {82.7} {86.1} {83.9} {64.1} {69.4} {70.9} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {40.4} {38.3} {34.4} {44.9} {43.0} {38.6} {61.1} {61.0} {54.7} {46.2} {49.0} {47.6} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {58.6} {51.5} {43.2} {71.3} {64.0} {53.8} {114.4} {113.2} {97.6} {73.2} {75.4} {69.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {59.6} {39.4} {25.0} {84.6} {57.4} {35.5} {188.6} {160.8} {110.9} {104.3} {90.7} {65.7} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.30} {0.31} {0.32}  {0.43} {0.46} {0.48}  {0.55} {0.43} {0.37}  {0.49} {0.42} {0.34} VAR൫߰൯ {4.78} {4.36} {3.92} {4.28} {4.45} {4.43} {10.76} {9.24} {7.32} {1.96} {2.39} {2.75} VAR ቀ൫߰ − ߰൯ଶቁ {0.130} {0.122} {0.122}  {0.145} {0.089} {0.066}  {0.666} {0.488} {0.411}  {0.068} {0.055} {0.031} COR(log ݊ , ଶ) -0.8880 -0.9119 -0.9321 -0.9380 -0.9583 -0.9728 -0.5330 -0.6293 -0.7387 -0.7738 -0.7484 -0.7010  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.5373 0.4600 0.3338 0.6434 0.5446 0.4062 0.2167 0.3970 0.4930 0.1086 0.0144 -0.1179  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.7671 -0.7935 -0.8128 -0.8070 -0.8278 -0.8448 -0.6318 -0.6880 -0.7273 -0.3815 -0.3504 -0.3317  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.5683 0.5342 0.3752  0.6611 0.6334 0.4887  0.2370 0.3442 0.4123  0.0855 0.0264 -0.0662  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8665 -0.8995 -0.9361 -0.8933 -0.9191 -0.9510 -0.8594 -0.8515 -0.8607 -0.6522 -0.7215 -0.7777  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.8748 0.7425 0.5253 0.9398 0.9527 0.6809 0.8030 0.7716 0.5829 0.8475 0.9064 0.8966  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.3229 0.2264 0.0582  0.4450 0.3331 0.1539  0.2965 0.2257 0.1243  0.5428 0.5173 0.4332  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Uruguay, 2004  Mexico, 2004  Brazil, 2006  Guatemala, 2006 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.177 0.254 0.316 0.178 0.227 0.281 0.072 0.144 0.210 0.040 0.080 0.151  ߶෨ 0.3279 0.3249 0.2899 0.3261 0.3210 0.2916 0.3172 0.3086 0.2789 0.3130 0.3012 0.2671  ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3342 0.3337 0.3235  0.3287 0.3263 0.3158  0.3192 0.3162 0.3054  0.3166 0.3119 0.2985  

RMS of σn (ߪത) 0.8302 0.8230 0.8147 0.8742 0.8928 0.9151 0.9393 0.9449 0.9505 0.9575 0.9738 0.9889  ߪധ 0.8244 0.8210 0.8171 0.8706 0.8794 0.8899 0.9376 0.9405 0.9434 0.9473 0.9560 0.9642  ߪଶധധധ 0.6780 0.6725 0.6661 0.7539 0.7692 0.7873 0.8782 0.8838 0.8893 0.8920 0.9088 0.9249  log ݊തതതതതത 1.3106 1.1931 1.0581  1.5536 1.4561 1.3440  1.3632 1.2647 1.1525  1.7247 1.6165 1.4983  VAR(log ݊) 0.2188 0.2520 0.2881 0.1843 0.2075 0.2427 0.1860 0.2093 0.2410 0.2086 0.2252 0.2485  

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} {100.0} 

Centred 3rd moment of log ݊ {-27.4} {-28.5} {-24.0} {-19.6} {-27.8} {-34.2} {-20.2} {-26.5} {-29.0} {-13.7} {-17.3} {-22.1} 

Centred 4th moment of log ݊ {79.6} {80.8} {77.0} {74.7} {86.0} {92.7} {74.4} {79.7} {80.1} {69.5} {79.5} {88.8} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {57.7} {55.6} {48.2} {56.2} {65.2} {68.4} {55.8} {58.7} {56.0} {48.6} {57.0} {64.0} VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {101.8} {94.7} {78.0} {106.8} {126.5} {130.2} {94.8} {99.1} {90.7} {93.9} {116.4} {133.2} VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {146.1} {113.2} {73.3} {205.6} {224.0} {199.3} {143.1} {133.7} {102.9} {190.1} {227.5} {237.7} VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.49} {0.39} {0.30}  {1.41} {1.43} {1.45}  {0.22} {0.15} {0.12}  {1.35} {1.08} {0.82} VAR൫߰൯ {7.11} {5.24} {3.61} {2.57} {2.77} {2.73} {5.01} {4.65} {3.95} {8.15} {8.63} {9.49} VAR ቀ൫߰ − ߰൯ଶቁ {0.543} {0.526} {0.420}  {0.119} {0.097} {0.055}  {0.204} {0.142} {0.102}  {0.897} {1.246} {1.128} COR(log ݊ , ଶ) 0.5012 0.6105 0.6609 -0.9019 -0.9092 -0.9223 -0.7070 -0.7047 -0.7377 -0.7281 -0.6895 -0.6532  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ -0.3677 -0.2067 -0.0062 0.3567 0.4594 0.5340 -0.1829 0.0069 0.2275 -0.1045 -0.1113 -0.0932  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ 0.1070 0.1881 0.2857 -0.7590 -0.7990 -0.8302 -0.6580 -0.7742 -0.8957 -0.4211 -0.4339 -0.4500  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ -0.3064 -0.2836 -0.2003  0.4691 0.5381 0.5877  0.1044 0.2164 0.3243  0.0687 0.0546 0.0361  CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ -0.8400 -0.8188 -0.8208 -0.7372 -0.7837 -0.7984 -0.8575 -0.8499 -0.8432 -0.2476 -0.5059 -0.6879  COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.6133 0.4922 0.4061 0.6707 0.7253 0.7284 0.7909 0.8209 0.6817 0.5673 0.6301 0.6793  COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.1451 0.0683 -0.0464  0.4694 0.4289 0.3622  0.3045 0.2555 0.1832  0.4887 0.5189 0.4869  

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 

 



Annex 2. Components in Factor Decomposition of the Second-Order Derivative of the MLN e-i Curve by the Type II Approximation (Conditnued)  
  Peru, 2004  Columbia, 2004 

  ε=0 ε=0.5 ε=1 ε=0 ε=0.5 ε=1 ߝෝ  0.458 0.434 0.442 0.131 0.161 0.195 ߶෨ 0.2987 0.3041 0.2858 0.3078 0.3010 0.2722 ߶ ቀΦିଵ൫Φ෩൯ቁ 0.3074 0.3089 0.3015  0.3091 0.3060 0.2942 

RMS of σn (ߪത) 0.9946 1.0052 1.0210 1.0082 1.0227 1.0387 ߪധ 0.9887 0.9940 1.0017 1.0040 1.0116 1.0198 ߪଶധധധ 0.9735 0.9839 0.9990 1.0038 1.0193 1.0360 log ݊തതതതതത 1.6821 1.5741 1.4495  1.5221 1.4154 1.2912 VAR(log ݊) 0.2045 0.2298 0.2718 0.1997 0.2289 0.2699 

{100.0} {100.0} {100.0} {100.0} {100.0} {100.0}

Centred 3rd moment of log ݊ {-18.5} {-28.6} {-37.8} {-23.7} {-30.7} {-34.3}

Centred 4th moment of log ݊ {82.2} {98.4} {109.3} {80.1} {90.0} {93.8}VAR ቀ൫log ݊ − log ݊തതതതതത൯ଶቁ {61.7} {75.4} {82.2} {60.1} {67.2} {66.8}VAR ቀ൫log ݊ − log ݊തതതതതത൯ଷቁ {137.6} {170.7} {179.8} {118.2} {131.9} {126.0}VAR ቀ൫log ݊ − log ݊തതതതതത൯ସቁ {312.4} {356.1} {322.4} {224.4} {222.4} {175.9}VAR൫ߪ ⁄ଶധധധߪ4 ൯ {0.97} {0.88} {0.82}  {0.89} {0.69} {0.57}VAR൫߰൯ {18.26} {12.71} {8.46} {1.55} {1.49} {1.42}VAR ቀ൫߰ − ߰൯ଶቁ {2.793} {1.890} {0.935}  {0.040} {0.034} {0.022}COR(log ݊ , ଶ) -0.4141 -0.6001 -0.7488 -0.7498 -0.7679 -0.8089 CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ଶቁ 0.5551 0.5697 0.5903 0.0443 0.2061 0.3701 CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ଶቁ -0.3529 -0.4994 -0.6310 -0.6225 -0.7354 -0.8406 CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ସ, ଶቁ 0.4425 0.5377 0.6177  0.2859 0.3903 0.4807 CORߪ ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ߰ቁ 0.2561 0.0440 -0.1583 -0.5499 -0.6540 -0.7201 COR ቀ൫log ݊ − log ݊തതതതതത൯ଶ, ൫߰ − ߰൯ଶቁ 0.3363 0.3023 0.2484 0.5827 0.6540 0.6347 COR ቀ൫log ݊ − log ݊തതതതതത൯ଷ, ߰ቁ 0.2246 0.2756 0.2844  0.4120 0.4134 0.3672 

Note: Figures in parentheses () are the ratios to VAR(log ݊) (in percent). 
 



Annex 3. The Gini Index e-i Curve for Individual Equivalised Disposable Income and Its 

Approximations 
 

 

Slovenia, 2004 

 
 

 

Denmark, 2004 
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Annex 3. The Gini Index e-i Curve for Individual Equivalised Disposable Income and Its 

Approximations (Continued) 
 

 

Sweden, 2005 

 
 

 

Finland, 2004 
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Annex 3. The Gini Index e-i Curve for Individual Equivalised Disposable Income and Its 

Approximations (Continued) 
 

 

Czech Rep, 2004 

 
 

 

Austria, 2004 
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