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THE INEQUALITY PROCESS AS A
WEALTH MAXIMIZING PROCESS

John Angle
Inequality Process Institute,

Post Office Box 429, Cabin John, Maryland 20818 angle@inequalityprocess.org

Abstract. The One Parameter Inequality Process (OPIP) long  predates the Saved Wealth Model (SWM) to which it is isomorphic
up to a different choice of stochastic driver of wealth exchange. Both are stochastic interacting particle system intended to model
wealth and income distribution. The OPIP and other versions of the Inequality Process explain many aspects of wealth and income
distribution but have gone undiscussed in econophysics. The OPIP is a jump process with a discrete 0,1 uniform random variate
driving the exchange of wealth between two particles, while the SWM, as an extension of the stochastic version of the ideal gas
model, is driven by a continuous uniform random variate with support at [0.0,  1.0].  The OPIP’s stationary distribution  is a  Lévy
stable distribution attracted to the Pareto pdf near the (hot) upper bound of the OPIP’s  parameter, T, and attracted to the normal
(Gaussian) pdf toward the (cool) lower  bound  of  T.  A  gamma pdf model approximating the OPIP’s stationary distribution is
heuristically derived from the solution of the OPIP. The approximation works for T < .5, better as T -> 0. The gamma pdf model has
parameters in terms of T. The Inequality Process with Distributed Omega (IPDO) is a generalization of the OPIP. In the IPDO each

iparticle can have a unique value of its parameter, i.e., particle i has T ,  The meta-model of the Inequality Process implies that
smaller T is associated with higher skill level among workers. This hypothesis is confirmed in a test of the IPDO. Particle wealth
gain or loss in the OPIP and IPDO is more clearly asymmetric than in the SWM (8=/ 0). Time-reversal asymmetry follows from
asymmetry of gain and loss. While the IPDO scatters wealth, it also transfers wealth from particles with larger T to those with
smaller T,  particles that according to the IPDO’s meta-model are more productive of wealth, nourishing wealth production. The

ismaller the harmonic mean of the  T ’s  in the IPDO  population of particles, the more wealth is concentrated in particles with
smaller T, the less noise and the more  T signal there is in particle wealth, and the deeper the time horizon of the process. The IPDO
wealth concentration mechanism is simpler than Maxwell’s Demon. 

PACS.   89.65.Gh Econophysics    89.65.-s Social and economic systems 

Keywords: Competition, Gamma pdf, Income distribution, Robust loser, Techno-cultural evolution, Wealth maximization

1 Introduction  1

The simplest version of the Inequality Process, the One
Parameter Inequality Process (OPIP) [1-23] has different properties
from the Saved Wealth Model (SWM) of Chakraborti and
Chakrabarti [24], examined and elaborated in[24-30] although the
two are isomorphic up to their stochastic drivers and Lux [1] judges
the two models to be “essentially equivalent”. The respective meta-
models differ. The choice of the stochastic driver of wealth exchange
in each follows from the meta-model of each. A meta-model is a set
of understandings about empirical referents, variables, hypotheses,
and tests. The present paper shows that the OPIP and a
generalization of it, the Inequality Process with Distributed Omega
(IPDO), form a theory of wage income distribution as a byproduct
of wealth maximization while the SWM does not. Before Lux [1],
the Inequality Process was undiscussed in the econophysics
literature.

Figure 1
Source: Author’s estimates from the March CPS.  See
Appendix A.
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2 Comparison of Saved Wealth Model (SWM) to the
One Parameter Inequality Process (OPIP)

The OPIP and the Saved Wealth Model
(SWM) are both stochastic interacting particle system
models that scatter a positive quantity, ‘wealth’. The
particles represent people with differing amounts of
wealth. The models share assumptions of the ideal gas
model, i.e., an isolated population of particles, random
pairing of particles for exchange of a positive quantity,
the sum of which after the exchange equals the sum
before. The OPIP is a jump process with a discrete 0,1
uniform random variate driving the exchange of wealth
between particles, while the SWM as an extension of
the  ideal gas model [31], uses a continuous uniform
random variate with support at [ 0.0, 1.0] to drive
wealth exchange. The SWM subsumes the ideal gas
model as a special case. The difference between the
continuous uniform random variate with support at
[0.0, 1.0] of the SWM and the discrete 0,1 uniform random variate of the OPIP may appear inconsequential but that
appearance is misleading. The OPIP’s discrete stochastic driver highlights the relationship of its parameter to statistics
of income, particularly those of  wage income conditioned on education, whereas the continuous random variate of the
SWM obscures that relationship. 

The Inequality Process is abstracted from the
Surplus Theory of Social Stratification in economic
anthropology [3, 32].  The Surplus Theory explains
why hunter-gatherer society, viewed in anthropology as
the most egalitarian societal form, turned into the
chiefdom, the society of the god-king, viewed in
anthropology as the most inegalitarian societal form.
This striking transformation occurred whenever
hunter/gatherer populations acquired a food surplus,
usually through the acquisition of agriculture. This
transformation occurred in populations far removed
from each other in time, place, culture, and race, i.e.,
this  transformation is one of the few universals of
social science. The Surplus Theory accounts for this
transformation as the result of greed, chance, and
competition. However, while the Surplus Theory offers
a parsimonious explanation of the transformation, it
fails to explain why inequality in the sense of
concentration,  as measured for example by the Gini
concentration ratio of wealth, decreases at higher techno-cultural stages than the chiefdom, particularly post Industrial
Revolution [33]. Lenski [32]  advances an explanation of  decreasing inequality with techno-cultural evolution beyond
the chiefdom: more skilled workers are able to keep a larger share of the wealth they produce. The Inequality Process
models  Lenski’s speculative extension of the Surplus Theory. 

The OPIP’s 0,1 discrete uniform stochastic driver of wealth transfer in an  encounter between two particles
follows from the underlying verbal theory of a competition in which chance determines whether a win or a loss occurs
but once a loss occurs its consequence is  pre-determined.  Losers lose a fixed proportion of their wealth, T. A winner
gains a random amount of wealth. Winning and losing in the OPIP are asymmetric. There is no asymmetry in particle
collisions in the ideal gas model  on which the SWM is based. Since the OPIP’s meta-model says that more skilled

Figure 2
Source: Author’s estimates from the March CPS.  See Appendix A.

Figure 3
Source: Author’s estimates from surveys of the Luxembourg  Income
Study. See [35].
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(1a,b)

(2a,b)

workers lose less wealth in competition for wealth, (1-T) represents worker skill level. The meta-model of the OPIP
requires it to explain the course of the Gini concentration ratio of personal wealth over  techno-cultural evolution, and

irequires a generalization of the OPIP that allows particles to have unique values of T, i.e., particle i with T , to replicate
features of the distribution of wage income conditioned on education seen in figures 1, 2, and 3.  Figure 1 shows the
relationship between education and the distribution of wage income conditioned on education in the U.S. in 1985 as
estimated from March 1986 Current Population Survey (CPS) data. See [34] and Appendix A. Figure 2 demonstrates
the stability of this relationship over four decades in the U.S. Figure 3 suggests that the relationship between education
and wage income distribution is not unique to the U.S. [35].

The transition equations of the Saved Wealth Model (SWM) [24] for the exchange of wealth between a pair of
particles in the notation of [27] are:

i iwhere xN  is particle i’s wealth after an encounter with particle j, x  particle i’s wealth before the encounter and , is a
continuous, uniform i.i.d random variate with support at [0.0,1.0 ].  8, called “savings”, is the parameter of the SWM.
8 is the fraction of each particle’s wealth not available for transfer in an encounter with another particle:

Particles are randomly selected for pairwise interaction.

tMaking the substitutions:  8 6 (1 - T) and , 6 d  where:

and:

yields the one parameter Inequality Process (OPIP) [7, 13, 16]:

t(2a,b) differs from (1a,b). While , is a continuous uniform random variate with support at [0.0,1.0], d  is a discrete
uniform random variate taking on the values 0 or 1,  a Bernoulli variable. The difference between the intervals on which
8 and T are defined follows from the respective  choice of stochastic driver. The OPIP’s meta-model implies that (1-T)
= 0, the image of 8 = 0 is meaningless. Its image, 8 = 0, in the SWM is, however, well defined, where 8 = 0 is equivalent
to the stochastic version of the ideal gas model [31]. The assumption of an even number of particles in the OPIP
population and the simultaneity of particle encounters in the OPIP are simplifications that permit an approximate

itsolution for the wealth of particle i at time t, x .



4

Since the SWM is an extension of the ideal gas model, the SWM’s concept of temperature is analogous to that
of the ideal gas model: (1-8) :,  where : is mean wealth. (1-8) : is the mean of wealth exchanged between all particles
if all particles were paired for simultaneous encounters. The OPIP’s image of the SWM’s (1-8) : is T:. However, the
properties of the OPIP are unaffected by :, which the OPIP takes as an exogenous variable.  The OPIP is :-symmetric.
T is the analogue of temperature in the OPIP since the properties of T: in the OPIP depend on T. Note that the analogue
of temperature in the OPIP is bounded from above.

tIn the OPIP, particle i wins if d  = 1 with probability 1/2 and loses otherwise. There is no outcome in-between
a win or a loss. The two outcomes are asymmetric in the OPIP, as you can see in figure 4. In the event that particle i
wins, it gains an T share of its competitor’s wealth. The gain for particle i is a random variable whose expectation is T:.
On the other hand, if particle i loses, it loses a fixed share of its wealth, an T share of its wealth, which from the point
of view of particle i is a determinate outcome.  The clarity of the asymmetry between winning and losing in the OPIP

tdoes not depend on the magnitude of T. This asymmetry of the OPIP would be obscured if d  were replaced by the SWM
random variate, ,. In the SWM  the asymmetry of winning and losing must be estimated through ,’s noise and so does
depend on the magnitude of 8. 

The asymmetry of winning and losing in the OPIP provides time reversal asymmetry for particle wealth. In this
respect the Inequality Process differs from the ideal gas model (the SWM for 8 = 0). The OPIP also differs from the
SWM for 8 > 0 to the extent that , obscures the difference between the 8 and 0. The  direction of time in the OPIP is
readily ascertained by a glance at the time-series of an OPIP particle’s wealth. The arrow of time points toward wealth

Figure 4: Scattergram of forward differences  of wealth in OPIP against wealth



      Based on Angle [5].
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t t     ‘E[d ]’ is used to express the mathematical expectation of d .
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     Dagum (1977) [36] cites March (1898) [37] as the first published instance of the gamma pdf being used to model a wage distribution.  Such
4

applications of the gamma pdf since have been desultory, most appearing in the 1970's, e.g., Peterson and von Foerster (1971) [38], Salem and Mount

(1974) [39], Shorrocks (1975) [40], and Boisvert (1977) [41].  McDonald and Jensen (1979) [42], assuming the relevance of a two parameter gamma

pdf model to empirical income distribution, derive expressions for the statistics of inequality of a gamma pdf in terms of its parameters. Cowell (1977)

[43] mentions the gamma pdf as a model of income distribution, if not the best known. Kleiber and Kotz [23]  discuss the gamma pdf and related pdf’s

as a parametric model for income distribution, but still following, as in Cowell’s discussion, the Pareto and lognormal pdfs, which have figured more

prominently in econometric practice.

5

(3)

(4)

(5)

amounts that are a constant fraction of a time-adjacent larger wealth amount. T can be calculated from this time-series
if T is unknown. The corresponding determination in the SWM  can only be made statistically, i.e., with information
on a sample of particle wealth time-series,  and with increasing difficulty as 8 becomes small. 

iThe generalization of the OPIP in which particles may have distinct values of  T, each particle i with an T , is

icalled the Inequality Process with Distributed Omega (IPDO). In the IPDO, T  can be calculated from the time-series
of wealth amounts held by particle i. The direction of time can be ascertained from this time-series as well, if unknown.

iAngle [13, 16] has shown that T  can be estimated despite timewise aggregation of observations on particle i’s time-series
of wealth amounts.  

3 The Stationary Distribution of the OPIP is Not a Gamma PDF2

The gamma pdf can be obtained by maximizing the entropy of the distribution of wealth of the particles in the
population of a particle system subject to certain equality constraints. It is shown in this section of the paper that the
required equality constraints cannot be derived from the OPIP. The OPIP scatters wealth since the absolute value of the
expected difference of wealth between two particles after an encounter is less than before. The difference between

it jtparticles x and x  in the OPIP is from (2a,b):

i(t-1) j(t-1)Assuming that x  and x  are known, since given longitudinal survey data on income and wealth, data on these

tvariables may exist, and given that E[d ] = ½:3

The expected value of the difference in wealth between two particles after their encounter has the same sign as the
difference before the encounter diminished in absolute value by an T proportion.  

The distribution of x, wealth, in the OPIP can be approximated by a gamma probability density function (pdf),
but the distribution is not gamma.  The gamma pdf is defined by:4

where:
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

Figure 5 shows the effect of " on the shape of the function for 8 fixed at 1.0. The use of the Greek letter, 8, to
denote the gamma’s scale parameter is conventional and not related to the use of the letter in the SWM. A comparison
of figures 1, 2, and 3 with 5 suggests a relationship between the education level of a worker and the shape parameter,
the ", of a gamma pdf fitted to wage income conditioned on education. 

The entropy statistic, H:

is defined here in terms of relative frequency bins for the
distribution of wealth in the OPIP. The argument of the entropy

i istatistic is the relative frequency p  of the wealth amount, x ,

iwhere x  is the mean of wealth in the i  relative frequency bin ofth

fixed width.  Given a finite population of particles of size N, the
first constraint on the maximization of the entropy statistic to
obtain a gamma pdf of the stationary distribution of wealth is
that of the physical isolation of the particles and their persistence
through time:
 

iwhere n  is the number of particles with the wealth that puts them into the i  relative frequency bin. The secondth

constraint is the constancy of  total wealth in the population of particles due to the fact that wealth is neither created nor
destroyed in wealth exchanges in the Inequality Process, as can be seen by adding (2a) to (2b):

The second constraint is:

where : is the mean of wealth in the population of particles. 

Maximizing the entropy statistic subject to these two equality constraints, which obtain in the ideal gas model,
yields a negative exponential distribution of x. Maxentropically obtaining the gamma pdf instead requires a third
constraint (Kapur, [44]):

where :̃ is the mean of the natural logarithm of particle wealth. This constraint is exactly satisfied if:

implying:

Figure 5: Gamma pdfs with common scale
parameter, 8 = 0, and different shape parameters



     Based on Angle [6, 12, 15].
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(13)

(14)

(15)

i(t-1)in the interaction between a pair of particles in the OPIP, (2a,b).  Taking earlier values, x , as known, and later values,

itx , as unknown, the two constraints, equations #8 and #12,  together imply:

it j(t-1) it i(t-1)i.e.,  either x  = x , which is not in general true, or x  = x , i.e., wealth amounts do not change, which is false.  So
the OPIP (2a,b) does not have a stationary distribution that is exactly gamma. 

4 For Large T the Stationary Distribution of the OPIP is Approximately Pareto5

Let particle i be the general particle in the population of the OPIP (2a,b). The derivation of approximations to

itthe stationary distribution of this process follows from the solution of (2a,b) for particle i’s current wealth at time t, x ,

tin terms of the parameter, T, the stochastic variables, the d ’s (Bernoulli variables), and the wealth of particles j, k, l,
.... encountered by particle i at time t, t-1, t-2, ..... This solution is found by back-substitution:

tAt time t, all stochastic events prior to d  have been realized as 0's or 1's so the RHS of (14) equals:

itParticle i’s wealth at time t, x , in (15) is a sum of T sized  "bites" taken by particle i out of the wealth of competitor
particles at previous times multiplied by (1-T) raised to the power of the sum of particle i’s later losses, i.e., particle i’s
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(16)

(17)

(18)

(19)

itcurrent wealth, x , is the sum of gains from past wins that particle i did not later lose. There is a run structure in (15)
made clearer by re-writing (15) as:

itWhen T is large and (1-T) small, particle i’s wealth, x , in (16) can be approximated as the sum of winnings from
competitors in a run of consecutive wins moving backward in time because the first loss encountered moving backward
in time from the present, time t, stops the run by almost erasing particle i’s wealth. Consequently:

itx  is approximately a  Lévy stable variable where the number of summands on the RHS of (17), n, is distributed as a
geometric probability function:

where p is the probability of a win and k is the number of wins. p in the OPIP equals ½.  (17) is distributed,
approximately, as a Pareto pdf [45]:

where " is a parameter which just happens to be denoted by the same Greek letter as a parameter of the gamma pdf and
k is the minimum of x:

So the Pareto pdf is an attractor of the OPIP as T 6 1.0. This result should be compared with the stationary distribution

of the SWM as (1-8) 6 1.0, the image in the  SWM of the OPIP’s T 6 1.0. The SWM’s stationary distribution (1-8)

6 1.0 is a negative exponential pdf, a pdf with a lighter right tail than that of the Pareto. When T is large and (1-T)

small, particle memory is short since the first loss encountered, moving back in time on the RHS of (16), erases nearly
all the information accumulated in the prior history of losses encoded in a particle’s wealth.  The probability that a
consecutive run of wins is no longer than J, J = 1,2, 3,....., is 1 - (½)  which quickly approaches 1.0 given independentJ

probabilities of winning equal to ½.  When mean T is large and mean (1-T) is small in the IPDO, any difference between

iT ’s will be difficult to distinguish using particle wealth, most of which is success runs produced by the Bernoulli
variables, i.i.d. random variables, i.e., just noise.



     Based on Angle [6, 12, 15].
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(20)

            (21)

5 For Small T the Stationary Distribution of the OPIP is Approximately Gamma6

Conversely, when T is small and (1- T) large, a) losing an encounter does not by itself erase a particle’s wealth

itand x  can be approximated as the sum of winnings in a run of wins backward in time tolerating some intervening losses;

itb) the memory of the process is longer and there is more information about particle i’s history in x ; c) a particle’s wealth
is more due to small T (wealth retention after a loss) than to consecutive wins in encounters, i.e., due to a determinate,
unvarying characteristic of the particle rather than chance. As T becomes small, the RHS of (15) loses its run-like
character and becomes a sum of small random increments. Consequently, given the central limit theorem, as T becomes

itsmall, the stationary distribution of x  converges to a normal distribution. 

itWhen T is is sufficiently small, x  can be approximated by the RHS of (20):

(20) is (15) with : substituted for the wealth of particles that particle i encountered in the past.  (20) can be demonstrated
numerically to be an adequate approximation to (15) for many purposes when T < .5. 

The infinite series in the brackets on the RHS of (20) behaves much like the sum of a finite sequence of varying
length of unweighted Bernoulli variables.  The weight on each of the Bernoulli variables of (20 ) is (1-T) raised to the
power of  losses occurring later in time. If there are no losses later in time, the weight is 1.0. The smaller (1-T),  the
fewer losses need occur before any gain from a previous win has been erased. The weights allow particle i to keep gains
as long as particle i wins, but given losses, a small number when (1-T) is small, a larger number when  (1-T) is large,
gains occurring before those losses are erased. (1-T) determines a time horizon from the point of view of the present,
time t, looking back into the past. 

The infinite series of weighted Bernoulli variables in the brackets on the RHS of (20) can be approximated by
summing a finite sequence of unweighted Bernoulli variables running from the present, t, back to t - J in the past:

Numerically, (21) becomes a better approximation to the series in the bracket on the RHS of (20) as T decreases and J
increases (moving backward in time from the present) until particle i encounters enough losses to erase gains from
encounters at earlier times. Let N be the minimum number of discrete losses that approximates the power of (1-T) so
that (1-T)  is negligibly different from zero. The number of  wins of particle i, k, must be the same in (20) and (21). N
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(22a)

If N=1, one loss essentially wipes out any contribution from previous wins in the infinite series of (20),
 i.e., T is so close to 1.0 that:

twhen d  = 0. N, like T, is a parameter. N is the number of losses that makes prior wins irrelevant. N=1 corresponds to
a (1-T) close to 0.0 and the sum (21) is the number of consecutive wins moving backward in time from the present to
time t-J. Where N=1, a wealth of 0, i.e, k = 0, is approximated in (21) by a sequence of two Bernoulli variables, one at

t (t-1) t (t-1)the present time, d , the other at the time previous, d . d  must be a loss, else k > 0. d  is a loss too. It is the loss
required by making N=1, since:

appears in the series in the bracket on the RHS of (20) at time (t-1) and could not approximate zero until time (t-1)

(t-1). (t-1)because it appears as a cofactor of d  The effect of (1-T) being small makes the question of whether d  equals 1 or
0 irrelevant in (20) since multiplication by small (1-T) approximates a loss even it is a win. This effect must be

(t-1)represented in (21) by a loss: d  = 0.

Where N = 1 and k = 1, (21) becomes the sum of three Bernoulli variables with realizations:

td  = 1

(t-1)d  = 0

(t-2)  d    = 0
The win at time t provides the k = 1 in (21) when this sequence of Bernoulli variables is summed in (21). The loss at
t-1 must occur; else, because a win at time t-1 in (20) would be multiplied by:

and k > 1, contrary to the hypothesis that k = 1. (1-T) goes into effect at t-2 in (20), where because of a win at t and a
loss at t-1:

(t-2)In (20) it does not matter whether the Bernoulli variable at t-2, d  is a win or a loss, since multiplication of a win at

(t-2) (t-2)t-2, d  = 1.0, by (1-T) approximates zero, a loss. This situation is modeled in (21) by d  = 0. 

These examples show that when N = 1, there must be N +1 losses in (21) for its discrete sum  to approximate
the value of the infinite series on the RHS of (20). Thus the number of Bernoulli variables in (21),  J +1, equals k+N+1.
It can be shown that there are N + 1 losses and (21) has  length  k+N+1 Bernoulli variables when k > 1 or N > 1 as well.
The random variable, k successes before N+1 losses in a sequence of independent Bernoulli variables, is distributed as
a negative binomial, NB(N,p), probability function (pf), where p is the probability of success, here 1/2. The N parameter
approximates the shape parameter of the approximating gamma pdf [7,16].  An expression for the shape parameter of
the approximating gamma pdf can be obtained in terms of T, if an expression can be found for N+1 in terms of T. N+1
is the discrete approximation to the sum of (1-T) raised to successively higher powers:

which implies that:



     Based on Angle [13, 16, and 21].
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(22b)

(22c)

(22d)

(22e)

(22f)

where " is the shape parameter of the approximating gamma pdf. McDonald and Jensen [42] show that the Gini
concentration ratio is a monotonically decreasing function in a gamma pdf of its shape parameter:

which, given (22b), means that the Gini concentration ratio of the gamma pdf approximating the OPIP’s distribution
of wealth is a monotonically increasing function of T. The OPIP is  consistent with its meta-model’s proposition that
rising skill levels in the labor force reduce the concentration of wealth. In particular, the OPIP implies that most of the
reduction in the concentration of wealth has occurred post-Industrial Revolution with the onset of mass education.
However, while the OPIP implies that the concentration of wealth falls as skill levels rise in the labor force, the OPIP
also implies that a  statistic that many social scientists consider a measure of inequality, dispersion, increases as mean
wealth rises. The expression for the variance of wealth in the gamma pdf model of wealth in the  OPIP is "/8 . Since2

the mean of the OPIP, :, is exogenously determined and known, 8 can be expressed in terms of " and :, via the
expression for the mean of a gamma distributed random variable in terms of the parameters of the gamma:

The variance, var(x), of a gamma distributed random variable, x, is:

So in terms of T and :, var(x) of the gamma pdf model of the OPIP stationary distribution of x. wealth, is:

The OPIP implies that while hunter/gatherer society may appear egalitarian in the sense of a small dispersion of wealth
because there is little wealth, hunter/gatherer society has the hottest competition, largest T, and if it acquires wealth, the
greatest concentration of it.  According to the OPIP the egalitarianism of hunter/gatherer society is only in terms of  the
dispersion of wealth which is low because there is little of it. Thus the OPIP is consistent with its meta-model’s
explanation of the universality of the appearance of inequality when hunter/gatherers acquire food surpluses, wealth.
An increase in : when it is very small, in the presence of large T, increases the dispersion of wealth and allows the
concentration of wealth to be noticed. 

6 The Inequality Process with Distributed Omega (IPDO), the OPIP with a Population of Particles each with its

iT 7

Figure 1 shows that the shapes of the relative frequency distributions of annual wage and salary income vary
by people's level of education in the U.S. Figure 2 shows that these shapes have been stable over 40 years. Figure 3
suggests that these shapes are not peculiar to the U.S. Following its meta-model, the Inequality Process models a labor
force composed of workers with different educations via a population of particles each with a possibly distinct value of
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(23a,b)

ithe T  parameter, i.e. particle i has T , the Inequality Process with Distributed Omega (IPDO). The IPDO models change

Rin the distribution of education in the labor force by  change in the proportion, w , of the population of particles in each

R R RiT  equivalence class. When particle i is in the T  equivalence class, its parameter is referred to as T . The meta-model

Rof the Inequality Process implies that (1-T ) estimated from observations on the wage incomes of workers at different
levels of education should increase at each successively higher level of educaton.  Since the effect of education on
people’s productivity is quasi-permanent during their work lives,  education is modeled as time invariant from the point

Riof view of wage income determination. The equations for an encounter between particle i that loses an T  share when

2jit loses and particle j that loses an T  share when it loses are:

where the quantities are defined as in (2a,b) except for:

Ri         T  = proportion of wealth lost by case i when it loses

2j         T  = proportion of wealth lost by case j when it loses.

(23a,b) defines the IPDO.

Figure 6: Scattergram of forward differences in the IPDO against wealth
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(24)

(25)

(26)

(27)

(28)

RWhen particle i, in the T  equivalence class loses, its loss is in absolute value:

it i(t-1) i(t-1)See figure 6, the graph of foward differences, x -x , against wealth, x  in the IPDO (23a,b). Losses of particles in

R R Ri(t-1) Rithe T  equivalence class fall on the line y = -T x .  When particle i whose parameter is T  wins an encounter with

2particle j whose parameter is T ,  its gain is:

The expected gain of all particles in the IPDO (23a,b) is:

Rwhen there are Q distinct T  equivalence classes. The expectation of gain of particle i is independent of the amount of

Ri(t-1)its wealth, x , resulting in a regression line with near zero slope fitted to gains in figure 6.

(23a,b) is solved by backward substitution:

itThe RHS of eq (27), after the realization of d 's as 0's or 1's, equals:

Ri(28) is the sum of "bites" taken out of competitors multiplied by (1-T ) raised to the power of the number of later losses,

it Rii.e., ego's current wealth, x , is what it has won from competitors and did not lose at a later time. When (1-T ) is small,

it Rix  is determined by the length of a consecutive run of wins backward in time. Where (1-T ) is large, losing is less

itcatastrophic and x  can be considered a run of wins backward in time tolerating some intervening losses.

The RHS of (29a) approximates (28) as (20) approximates (15). Ego's wealth is the sum of its gains from

Ricompetitors, each gain weighted by (1-T ) raised to the power of the number of later losses: 
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(29a)

(29b)

(29c)

         (29d)

(30)

(31)

(32)

where:

and:

R Rwhere n  is the size of the population in the T  equivalence class, and:

2 N . QNumerically, (29a) approximates (28) better when T , T , T ,...., T  are small.

The series in brackets on the RHS of (29a) is the series in brackets on the RHS of (20), so the wealth of members

Rof the T  equivalence class of IPDO particles is approximately distributed as a gamma pdf with the shape parameter:

R Rwhere "  is the shape parameter of the approximating gamma pdf for T  < .5. Because the run-like series in brackets
on the RHS of (29a) is the series inside the parentheses on the RHS of (20), whose expectation is 1/T, mean wealth of

R Rthe set of cases with T , : , is:

R R RGiven (31) and the fact that the mean of the approximating gamma pdf, : , is " /8 :
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(33)

(34)

(35)

(36)

(37)

 (38)

which implies:

R R R R(29b) defines T&&:  in terms of w 's and T 's which are known and : 's which are not. 8  can be solved for in terms of

R Rknowns, T , w , and the grand mean, :, also known, in the following way:

and from (31):

which implies that:

so the RHS of (33) can be expressed in terms of known quantities:

Rwhere T̃ is the harmonic mean of the T ’s. 

Given (31):

Ra loss occurring to an T  class particle at the conditional mean,

R Rthe : ,  approximately equals expected gain, T&&: . See the vertical lines in figure 6 at the conditional means, : ’s. The
length of the vertical line segment above the x-axis,  T&&: , approximately equals the length of the vertical line segment

R Rbelow the x-axis,  T : .  T&&:  can be estimated over any range of income sizes, in particular close to the income size that
the definitions and collection practices of large-scale household surveys are optimized for: the median. Estimating T&&:

Rfrom gains does not require the identification of the T  of
particles.  T&&:   can be estimated either as the intercept of the
linear regression of gains on wealth or as the mean gain of

Rparticles with a gain. If the T ’ s are known, T&&:  can be
estimated as the mean loss (in absolute value) of cases in the

RT  equivalence class or as the actual loss at the conditional

R Rmean,  :  . Given T , an estimate of T&&:  can be used to

R R Restimate : , or given : , T&&:  can be used to estimate T .

Figure 7: Gamma pdfs with common scale parameter, 8 =
2.0, and different shape parameters



     Partially based on Angle [18, 20]
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(39)

tAn upward shift in the skill levels of the population, resulting by hypothesis in a smaller T̃  (subscripted t to

Rindicate that it can change over time as the proportion of T ’s change in the population of particles), increases the scale

R Rt Rtparameter  of the approximating gamma pdfs of all T  equivalence classes, 8 . A larger 8  compresses the distribution
of wealth of particles in that equivalence class to the left, decreasing all wealth amounts, as in figure 7, which doubles

Rthe scale parameter of figure 5. Compare figure 7 with figure 5. A smaller 8  stretches the mass of the distribution to
the right over larger wealth amounts. See figure 8. 

7 A Test of the Inequality Process with Distributed Omega (IPDO)8

The Inequality Process with Distributed Omega (IPDO) (23a,b) can be tested by fitting the gamma pdf model
(30), (37) of its stationary distribution of wealth to the distribution of wage income conditioned on education in the U.S.,
1961-2001. Education levels in the U.S. labor force rose rapidly during this period putting the IPDO which models the
effect of education on the wage distribution to a severe test. See figure 9. The test is the fitting of the gamma pdf model
of the IPDO’s stationary distribution to each of the partial distributions of the distribution of wage income conditioned

Rton education simultaneously. The fitted model is f (x), defined by:

where the variables are as defined in (23a,b), (30) and (37).  (39) is not an exact expression for the stationary distribution

tof the IPDO (23a,b). Rather, (39) is derived as an approximation to it under the assumption that T̃  is sufficiently small
to justify the gamma pdf approximation, (30), (37), and (39), to the stationary distribution of the IPDO. The expression

Rtfor the shape parameter, (30), does not change over time. Change enters (39) in the scale parameter, 8 , via the product

t t T̃ :  in (37). Fitting (39) to a wage income stream of workers at a particular level of education implicitly capitalizes their

twage income stream (or, conversely, annuitizes wealth in the model).  :  is the unconditional mean of wage income. It

tis hypothesized, given the meta-model of the Inequality Process, that T̃  decreases as the level of education rises. Nothing

Rin the model constrains estimated (1- T ) to vary with education. 

Equation (39) is fit to the wage income distribution, expressed in constant 2001 U.S. dollars, of workers 25+
in age at each of six levels of education estimated from 41 years of March Current Population Survey, 1962-2002 data.
See Appendix A. There is a simultaneous fit of (39) to each of the 246 partial distributions of wage income using 6

Figure 9
Source: Author’s estimates from March CPS data

Figure 8: Gamma pdfs with common scale parameter, 8 =
.5, and different shape parameters
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(40)

Rparameters, one T  for each level of education
distinguished. By contrast it would take the
estimation of 492 parameters to fit a two parameter
gamma pdf to each of the 246 partial distributions.
Fitting a two parameter gamma pdf to each of these
distributions is a conventional method of modeling
them.  The greater parsimony of the IPDO’s model,
(39), is stark. Each partial distribution is estimated
by a relative frequency distribution of nine bins
resulting in 9 x,y pairs to be fitted, where x = an
annual wage and salary income and y = the relative
frequency of that x. There is an x,y pair for each
relative frequency bin. The bins go from$1-$10,000
to $80,001-$90,000 in constant 2001 dollars. There
are 2,214 observations fitted.

Fitting (39) requires an estimate of the
unconditional mean of annual wage and salary

tincome, : . This is obtained from sample estimates of

(50)Rtthe conditional medians, x : 

(50)Rt twhere x  is a sample estimate of the R   conditional median. See Appendix B for the derivation of (40).   :  cannotth

be directly estimated from the sample because of the masking of large incomes in March CPS public use samples. 

The model (39) was fitted by nonlinear
least squares in which the sum of squared errors,

itweighted by the w ’s, the proportion of the sample
at each education level in each year, is minimized
simultaneously for all years by a stochastic search
algorithm, a variety of simulated annealing
(Kirkpatrick, Gelatt, and Vecchi [47]). The squared
correlation between expected relative frequencies
under the fitted model and observed sample relative
frequencies is .921. As shown in table 1, the

Restimated (1-T )’s scale with education, as the
meta-model of the Inequality Process hypothesized.
Standard errors are estimated by 100 bootstrap
samples. Figure 10 shows the expected relative
frequencies under the fitted model (39) and
observed relative frequencies in the year of the
worst fit of the  model. For comparison, figure 11
shows the year of best fit of the model.

Table 1.  Estimates of IPDO Model’s  Parameters

iHighest Level of Education T  Estimated by Fitting Model to 246 partial

distributions (41 years X 6 levels of education) 

Bootstrapped standard error

iof T   (100 re- samples)
iEstimate of "

icorresponding to T  

Eighth Grade or Less       0.4506 .000098 1.2194 

Figure 10: 2001, Year of Worst Fit of Model (39)
Source: Author’s estimates from March CPS data

Figure 11: 1985, Year of Best Fit of the Model (39)
Source: Author’s estimate from data of the March CPS
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Some High School       0.4005 .000063 1.4972 

High School Graduate       0.3554 .000037 1.8134 
 

Some College       0.3255 .000069 2.0718 
 

College Graduate       0.2579 .000186 2.8771 

Post Graduate Education       0.2113 .000108 3.7329 

In the alternative model, 246 unconstrained two
parameter gamma pdfs (492 parameters to be estimated), are
each fitted, one at a time. The 2,214 expected frequencies of
these 246 fits have a squared correlation with the observed
relative frequencies  of .943.  So the IPDO (39) fits almost as
well, at a cost in parsimony of  6 parameters estimated, as the
conventional alternative model at a cost of 492 parameters
estimated. This test shows that the IPDO’s model (39) accounts
with great parsimony for the distribution of wage income
conditioned on education in the U.S. 1961-2001. 

Figure 12  shows an estimate of the unconditional mean

tof annual wage income,  : ,  made via the fitting of the IPDO’s
model (39). A glance at figure 12 reveals that the unconditional
mean of annual wage income increased from year to year most
years between 1961 and 2001, although it decreased in some
years. Consequently, according to (37), the rising unconditional
mean should have contributed to the stretching of the distribution of annual wage income to the right 1961-2001 by

Rtmaking 8  smaller.  However, as figure 9 shows, more educated workers became a larger part of the labor force in those

t iyears. Figure 13 shows a steadily decreasing  T , the harmonic mean of the T ’s, as hypothesized because of the rising~

level of education in the labor force.

t tIn the model if the product (T̃ : ) increases, the

Rpercentiles of the distribution of wealth of each T  equivalence
class increase as the distribution stretches to the right, as in the
comparison of figure 8 to figure 5. All percentiles of this

t tdistribution increase with increasing (T̃ : ). Vice versa for a

t tdecrease in (T̃ : ) as the mass of the distribution is compressed
to the left and all percentiles decrease, as in the comparison of

t tfigure 7 to figure 5. T  decreased while :   increased between~

1961 and 2001. Figure 14 shows that in the 1960's and 1990's

t tthe product (T̃ : ) trended upward, and also in part of the 1980's.

tThe effect of decreasing T  (due to higher levels of education in~

the labor force)  was to decrease the size of wage gains and
exaggerate decreases in wages, i.e., some of the wage gains at
every level of education were eaten up by more highly educated
workers entering the labor force or less well educated workers
leaving it.

Figure 12: Unconditional mean of wage income in year t,

t: , 1961-2001, in thousands of constant 2001 dollars
estimated by fit of model (39) to  March CPS data

i tFigure 13: Harmonic mean of T ’s in year t, T̃ , 1961-
2001, estimated by fit of model  (39)  to  March CPS data
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(41)

(42)

8 The Inequality Process with Distributed Omega
(IPDO) as a Wealth Maximizing Process

The Inequality Process’ meta-model implies
that workers who produce more wealth are robust losers
in a competition in which all workers are as likely to
lose as win. This paper tests and confirms this
hypothesis. An empirical process like the IPDO may
acquire information about worker productivity from the
proportion of wage income lost when a worker loses
income.  More productive workers may be treated more
gently; they may recover more quickly from losses, or
it may be that worker skill is a form of wealth less
easily expropriated than more tangible forms. By
transferring wealth to such workers, this empirical
process acts against the scattering of wealth by
randomly decided competitions in which the expected
difference of wealth after the competitive encounter is
less than before (4), and more simply than Maxwell
imagined the  Demon [48] acting against the scattering
of kinetic energy in the ideal gas model. The IPDO’s
asymmetric treatment of gain and loss accomplishes this feat. The IPDO’s doing so via the transfer of wealth to robust
losers is counter-intuitive in Western cultures where runs of wins are taken as evidence of merit.  Since the SWM’s
asymmetry between particle gains and losses is obscured by its stochastic driver of wealth exchange, it is not a model
that would be naturally selected if robust losers are more productive.  An empirical process transferring wealth to robust
losers would be naturally selected if a)  more productive workers experience smaller losses, b) transferring wealth to the
more productive increases the aggregate production of wealth, and c) populations with a greater aggregate production
of wealth are selected. Points b and c seem plausible. Point a) should include evidence that more educated workers do
not experience smaller losses because of arbitrary discrimination in their favor. 

A direct test of point a) requires longitudinal data on worker earnings, a measure of productivity other than
earnings or education, and a way of estimating the mean length of time between IPDO particle encounters in terms of
of the time units in the data set, an issue discussed in [16]. Such a data set is not at hand. However, there is evidence for
points a), b), and c) in the 20  century history of how technology adoption in U.S. agriculture affected farm incomes. Theth

R Rt t tevidence is the falling ratio of mean wealth in the T  equivalence class, : , to the unconditional mean, : , as T̃  falls.

t RtFalling T̃  is the IPDO’s measure of increasing productivity in the population of particles. The relationship between :

t tand :  as a function of T̃  is, given (32) and (37):

R Rt t R t R tGiven fixed T ’s, :  becomes a smaller fraction of :  in every T  equivalence class as T̃  falls.  With fixed T ’s,  T̃   falls

2as the proportion of particles in equivalence class T  grows at the expense of the proportion of particles in equivalence

R R 2class T  where T  > T . The scale parameter of the gamma pdf approximation to distribution of wealth in the IPDO,

Rt8 , is from (37):

t t t tIf the proportional decrease in T̃  is greater than the proportional increase in : , the product (T̃  : ) decreases and the

Rdistribution of wealth in all T  equivalence classes is compressed  left over smaller wealth amounts, as in the comparison

Rt Rof figure 5 to figure 7 since 8  is larger. The variance of wealth in the T  equivalence class decreases rapidly as 

t t R(T̃  : ) decreases since the variance of the gamma pdf approximation to the stationary distribution of wealth in the T
equivalence class is:

t tFigure 14: Product (T̃ : ), 1961-2001, estimated by fit of model (39)
to data of March CPS
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(43)

(44)

t tSo luck in winning IPDO encounters advances the wealth of the lucky less than when (T̃  : ) was larger. If particle i were

i table to decrease T  in order to maintain its expected wealth, it would, in a finite population of particles, lower T̃  , further

i tincreasing particle i’s need to lower T  to maintain its expected wealth. Smaller T̃  means that the wealth of particle i is

imore closely tied to T .

In a well known phrase in the history of U.S.
agriculture, Cochrane [49] labels the effect of the
adoption of new agricultural technologies on U.S.
farm incomes in the 20  century a “treadmill”. Theth

adoption of new agricultural technology provided early
adopters only a transient income benefit as other
producers adopt the new technology in an attempt to
maintain their revenues.  Demand for most agricultural
commodities has a low price elasticity [50], so increased
output due to the new technology lowers the unit price
of the crop. While leaving the population is not an
option in the IPDO, the bankruptcy of high cost
producers buoyed mean farm income.  Cochrane’s
“treadmill” is the transiency of the advantage of being
an early adopter of new technology (a step forward on
a treadmill moving backward) and the burden of having
to continually adopt new technologies and new scales of
production to survive. Consumers reaped the windfall
increase of wealth from the fall in the unit prices of
agricultural rather than producers [50].  This process
was a wealth maximization process from the point of
view of the economy.  

From the perspective of the IPDO, the upgrading of education levels in the U.S. labor force has put the U.S. labor
force on the “treadmill” of having to obtain more education to maintain earnings. Figure 15 shows that the effect  of a

Rt t tfalling : /:  ratio when T̃  decreases. Figure 15 is the estimated ratio of median of wage income to the unconditional

tmean of wage income by level of education, 1961 to 2001. Figure 13 shows T̃  decreasing from about .36 to about .305

tin this time period as the level of education of the U.S. labor force rose. The unconditional mean of wage income, : , is
estimated in the fitting of the gamma pdf model (39) to the data. See figure 12. As noted in Section 7, the means of wage
income at each level of education, however, cannot be directly estimated from March CPS sample data. But each
conditional mean can be estimated from the statistic that is  perhaps the most reliably estimated sample statistic of wage
income, the conditional median. Doodson’s approximation to the median implies (Appendix B),  that the median wage

(50)Rtincome among workers at the R  level of education, x , is:th

the product of a constant by the conditional mean in (41), so (44) implies that the ratio of the conditional median to the

tunconditional mean also decreases as T̃  decreases.  Figure 15 shows that this ratio decreased  for five of the six education
groups in the U.S. labor force from 1961 through 2001. Thus the IPDO explains why the mean and median of wage
income of workers at every level of  education decreased relative to the unconditional mean of wage income,  except those
of the most educated, an open category, in which mean education may have risen. 

(50)R t Figure 15: Ratio of sample conditional medians, x , to

tunconditional mean of wage income, : , estimated by fitting of (39)
to distribution of wage income in U.S. conditioned on education,
1961-2001. 
Source: Author’s estimates based on data of March CPS.
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9. Conclusions
But for their respective stochastic drivers of wealth exchange between particles the One Parameter Inequality

Process (OPIP) (2a,b) and [2-23] and the Saved Wealth Model (SWM) of Chakraborti and Chakrabarti (1a,b) and [24-30]
are isomorphic stochastic binary interacting particle systems. By contrast, their respective meta-models, the set of
understandings about the referents, variables, hypotheses, and tests, are different. The  meta-model of each determines
each model’s choice of stochastic driver of wealth exchange between particles. The meta-model of the SWM is the
stochastic version of the ideal gas model. The meta-model of the Inequality Process is the Surplus Theory of Social
Stratification of economic anthropology, a verbal theory, as extended by Lenski [32]. This theory explains  why the
introduction of food surpluses transformed the societal type that anthropologists view as the most egalitarian, the
hunter/gatherer, into the chiefdom, the societal type they view as the least egalitarian. This metamorphosis occurred in
populations far removed in place, time, race and culture. It is one of a few universal propositions of social science. The
Surplus Theory asserts that there was a competition process among the hunter-gatherers which would have concentrated
wealth if the hunter-gatherers had much wealth to concentrate. The appearance of storable food surpluses, usually due
to the acquisition of agricultural technology, injected wealth into the hunter-gatherers’ competition process, which
concentrated it. Lenski [32] extends the theory to account for the decreasing concentration of wealth at higher techno-
cultural stages than the chiefdom, societal types with greater wealth than the chiefdom. Lenski hypothesizes that more
skilled workers create greater wealth, become a larger fraction of the labor force with techno-cultural evolution, and are
able to retain a greater proportion of the wealth they create. So the interpretation of (1-T), the proportion of wealth
retained by a particle in a loss to a competitor, as a worker’s skill level is intrinsic to the OPIP’s meta-model. As (1-T)
increases, the Gini concentration ratio of the OPIP’s stationary distribution decreases. So the OPIP is consistent with its
meta-model.

The SWM  uses the stochastic driver of the ideal gas model [31] because the SWM is intended as a
generalization of that  model, which it subsumes as a special case. While the  parameter of the SWM, 8, [not to be
confused with the scale parameter of a gamma pdf]  is named “savings”, its empirical referent is unspecified and no
hypothesis about 8 is tested in the SWM literature. The word ‘competition’ does not appear in the SWM literature. Where
the Inequality Process’s meta-model is a rich source of  empirical referents and associated hypotheses and tests, the
SWM’s meta-model, the ideal gas model, is not. 

The OPIP’s stationary distribution is a Lévy stable distribution that ranges from Pareto pdf attractor near the
upper (hotter) bound of its parameter, T,  to a normal (Gaussian) pdf attractor toward its lower (cooler) bound. A gamma
pdf model of the OPIP’s stationary distribution is suggested by the solution of the OPIP and works well as an
approximation for T < .5 , better as T approaches its lower bound. (30) and (32) are expressions for the parameters of the
approximating gamma pdf in terms of  T. As the SWM is a generalization of the ideal gas model, wealth in the SWM is
a generalization of  kinetic energy. So the image of temperature in the SWM is (1-8): where : is mean wealth. The OPIP
is : symmetric. The OPIP takes mean wealth as an exogenous variable. The properties of the OPIP depend on its
parameter, T, whose image in the SWM is 1-8. So while T: is the image in the OPIP of (1-8): in the SWM, the  OPIP
properties of the product T: depend only on T. Thus a society such as the chiefdom in OPIP perspective is hotter (has a
larger T) than an industrial democracy, even though mean wealth of the latter is much greater than that of the chiefdom.
In the OPIP’s perspective  techno-cultural evolution has been a cooling process even while mean wealth, :, has increased
proportionally faster than T has decreased proportionally. 

The Inequality Process with Distributed Omega (IPDO) (23a,b) is a generalization of the OPIP. In the IPDO each

iparticle may have a unique value of the parameter T, i.e., particle i has T . This generalization is required to test the
Inequality Process  on wage income data from a labor force with workers at different skill levels. The heuristic argument
for the derivation of a gamma pdf approximation to the stationary distribution of wealth in the OPIP is applicable to the

R RIPDO’s stationary distribution of wealth in the equivalence class of particles with T , where T  < .5. The gamma pdf
model that approximates the IPDO’s stationary distribution in terms of its parameters, (39), fits the distribution of annual
wage income conditioned on education in the U.S. from 1961 through 2001 well. With six levels of education
distinguished in the labor force of this period, there are 246 (6 levels of education X  41 years) partial distributions of the
conditional distribution to be fitted simultaneously by this 6 parameter model (one parameter for each level of education
distinguished). The fit of the alternative model, unconstrained two parameter gamma pdfs individually fitted one at a time
to each of the 246 distributions requires the estimation of 492 parameters. The IPDO model fits almost as closely as the
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Rfits of the 246 unconstrained two parameter gamma pdfs, fits requiring  the estimation of 492 parameters. The six (1- T )’s
estimated from the fit of the IPDO model (39)  scale with the level of worker education as hypothesized in the meta-model

Rof the Inequality Process. See table 1. The estimated T ’s are all less than .5, which, in terms of the IPDO, is why a
gamma pdf model is useful for modeling wage income distribution.

The Inequality Process’ meta-model determines the choice of its stochastic driver of wealth exchange between
particles. The stochastic driver in both OPIP and IPDO is a 0,1 discrete uniform random variate. The SWM’s stochastic
driver of wealth exchange is a continuous uniform random variate with support at [0.0, 1.0]. The asymmetry between
winning and losing is intrinsic in the Inequality Process’ meta-model which asserts that the proportion of wealth lost by
a worker in a loss varies inversely with the ability of that worker to produce wealth. What is random in an encounter
between two particles in the OPIP and IPDO is the determination of which one wins. What the loser gives up to the winner

iis predetermined from the loser’s point of view. It is an T share in the OPIP or T  share in the IPDO for particle i when
it loses. What the winner receives is, from the winner’s point of view, random. This asymmetry of gain or loss requires
a 0,1 discrete random variate to determine which of a pair of particles to a competitive encounter is the winner. The rest
is determinate: a fixed proportion of the loser’s wealth is transferred to the winner. Particle loss or gain has equal
probability in the OPIP and IPDO because the model has no information about the competitive abilities of particles, only
that they compete.

The asymmetry of winning and losing provides time reversal asymmetry of particle wealth holding. Given a
vector of consecutive wealth amounts of a particle in either the OPIP or IPDO, in chronological order or reverse-
chronological order, time flows toward smaller wealth amounts of wealth adjacent in time to larger wealth amounts that

Rare a constant fraction of the larger amount. This fraction is (1-T) in the OPIP, (1-T ) in the IPDO. If T is unknown, it
can be calculated from the time-series of wealth holding of a single particle of the OPIP population, or in the case of the

RIPDO, a single particle in each T  equivalence class of the IPDO.  The SWM for 8 = 0, the ideal gas model, has symmetry
of gain and loss and no time-reversal asymmetry. The SWM for 8 =/  0 has partially asymmetric gains and losses.  8
determines the degree of asymmetry. If 8 is not known, estimating 8 may require a long time series of wealth holding.
The problem of estimating the asymmetry of gain and loss in the SWM is not recognized or discussed in the SWM
literature.

If a competition process arose via natural selection to allocate wealth to workers who lose less when they lose,
robust losers, to increase the aggregate production of wealth, the IPDO would be  selected over the SWM because the
asymmetry of the IPDO’s stochastic driver of wealth exchange lets the IPDO operate with less information than the SWM.
The IPDO requires only that robust losers be the more productive workers. Then the IPDO transfers wealth to the more
productive, nourishing their production of wealth, maximizing aggregate wealth production.  The condition that robust
losers are more productive is empirically testable. The flow of wealth toward robust losers in the IPDO is a flow against
the entropy maximizing scattering of wealth via random, fair competition. The asymmetry of the IPDO does the work of

iMaxwell’s Demon, more simply. The IPDO does not require that each particle’s T  remain fixed over time. In a population

itof particles with time variable  T , the IPDO continually redirects the flow of wealth from particles with larger T to
smaller T’s. 

APPENDIX A: Data and Methods
The distribution of annual wage and salary income is estimated with data from the March Current Population

Surveys (1962-2002). The March Current Population Survey (CPS) is  known as the Annual Social and Economic
Supplement to the monthly Current Population Survey. It has a supplementary questionnaire which includes questions
on types of income received in the previous calendar year, posed on behalf of the U.S. Bureau of Labor Statistics. One of
the types of income asked about on the March Supplement is total wage and salary income received in the previous
calendar year. The CPS is conducted monthly by the U.S. Bureau of the Census (Weinberg, Nelson, Roemer, and Welniak,
[51]). The CPS has a substantial number of households in its nationwide sample. The model (39) is tested on the
population 25 + in age, earning at least $1 in annual wage and salary income. The age restriction to 25+ is to allow the
more educated to be compared to the less educated. The data of the March CPS of 1962 through 2002 were purchased from
Unicon, inc. (Unicon, inc, [52]; Current Population Surveys, March 1962-2002 [34]), which provides the services of data
cleaning and extraction software, along with research on variable definitions and comparability over time. Unicon, inc
was not able to find a copy of the March 1963 CPS which contains data on education. Consequently, the distribution of
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wage and salary income received in 1962 (from the March 1963 CPS), conditioned on education, is interpolated from the
1961 and 1963 distributions (from the 1962 and 1964 March CPS’).

All dollar amounts in the March CPS’ are converted  to constant 2001 dollars using the PCE (personal
consumption expenditure) price index numbers form Table B-7 Chain-type price indexes for gross domestic product,
Economic Report to the President, February 2003 (Council of Economic Advisers, [53]). 

The number of persons in the March Current Population Survey in each year and the number of them meeting
the criterion for selection are:

March CPS of Total number of person
records in the March
Current Population
Survey

people, age 25+, who
earned at least $1 in
previous calendar year

1962
1963
1964 
1965 
1966 
1967
1968

  71,745
  54,282
  54,543
  54,516
 110,055
 104,902 
 150,913

  22,923 
  15,147 
  23,903 
  23,839 
  46,656 
  45,266 
  47,157 

1969
1970 
1971
1972 
1973

 151,848
 145,023
 147,189
 140,432
 136,221

  48,088 
  46,004
  46,088 
  44,143 
  43,200

1974
1975
1976
1977 
1978

 133,282
 130,124
 135,351
 160,799
 155,706

  43,043
  42,424
  43,888
  52,663
  52,255

1979
1980
1981
1982
1983

 154,593
 181,488
 181,358
 162,703
 162,635

  52,793
  63,429 
  64,108
  57,877
  57,995

1984
1985
1986
1987
1988

 161,167
 161,362
 157,661
 155,468
 155,906

58,049 
59,819
59,596
59,603
60,501

1989
1990
1991
1992
1993

 144,687
 158,079
 158,477
 155,796
 155,197

57,158
62,883
62,942
62,085
61,331

1994
1995
1996
1997
1998

 150,943
 149,642
 130,476
 131,854 
 131,617 

59,575
59,999
53,358
54,553
54,056

1999        
2000        
2001        
2002

 132,324 
 133,710 
 128,821      
 217,219

54,659
55,925
53,967
89,200

The measurement of education changed in the CPS after the 1990 Census from a count of years of school
completed to a more degree-oriented measure which better assesses the diversity of post-secondary education. The present
study reconciles the two categorizations of educational attainment by collapsing both sets of categories to an ordinal
polytomy of six categories. The crudeness of this categorization blurs the distinction between the two different
categorizations of educational attainment. The categories of highest level of education attained used here are:

 elementary school or less

 some high school
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completed four years of  high school

 some college

completed  four  years of post-secondary  education

completed more than four years of post-secondary education

The distribution of annual wage income is estimated as a histogram with relative frequency bins that are of fixed
length, $10,000 wide (in terms of constant dollars), to facilitate comparison between the more dense left tail and central
mass and the less dense right tail of the distribution.

t (50)RtAppendix B: Estimation of the Unobservable :  from Sample Conditional Medians, x ’s   

tThe unconditional mean :  cannot be reliably estimated from reported wage incomes because a) estimation of
the mean is not robust against large outlying wage income observations, b) the CPS’ sampling frame is not optimized to
sample large incomes, and c) the Census Bureau itself believes that there is substantial error in the measurement of large
wage incomes [46]. The estimation of the median avoids these problems. Estimates of it are as robust as any sample
statistic of annual wage income can be.

t (50)RtIt is possible to estimate :  in terms of the sample conditional medians, the x ’s, and the proportions

Rtof the labor force in each category of education, the  w ’s (34) (37), by using Doodson’s approximation formula for the
median, (Weatherburn, 1947 [54],cited in Salem and Mount, [39]):

of a two parameter gamma pdf [39]:

Since:

t 1t 1t 2t 2t it it 6t 6t                :   =   w  :  +  w  :  + ... +  w  :  +  w  : .                                                         

The mean of a gamma pdf is the ratio of its shape to its scale parameter:

So:

and:

Rwhere T  < 3/4.
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