
Using Subroutines and Loops to Simplify Submissions Involving

Several Datasets

Goal

When doing comparative research, it is natural to want to run the same routine across several

different countries or across different waves. This approach can be simplified by the use of

macros, subprograms/subroutines, and loops. These are easy ways to repeat program commands

without having to retype them each time.

Activity

Compare the median (weighted) labour earnings for the United States and Mexico (2000), and

the United Kingdom (1999) by looking separately at gross wage earnings (pgwage), net wage

earnings (pnwage) and self-employment earnings (pself). Your sample should only include

those with positive labour earnings (from either paid or self-employment) who are 16 years of

age or older. For this comparison, you should write a subroutine to run for each dataset.

Now repeat the same analysis for the five new Latin American datasets (BR06, CO04, GT06,

PE04 and UY04). In order to shorten the code, loop the subroutine created above over the 5

datasets.

Use the information from your output to answer the following questions:

1. Which country had the highest median wages from employment?

__

__

__

2. Are the income variables analysed above expressed in net or gross terms (i.e. before or after

deduction of income taxes and mandatory social contributions)?

__

__

__

Guidelines

 For this comparison, proceed according to the following steps:

- use a macro to define the variables you want to use;

- use a subprogram to define a subroutine to prepare the data and calculate the estimates;

- within the subroutine, i) create a dummy variable indicating adults (>=16 years); and ii)

find the median gross and net wage earnings and self-employment income for the subset

of persons for whom the dummy is one (i.e., adults) and for whom the relevant income

measure is positive.

 An introduction about macros in Stata

Macros are names (up to 31 characters) that can stand for strings, program-defined results,

or user-defined values. A local macro exists only within the program that defines it, and

cannot be referred to in another program. To refer to the contents of a local macro, place the

macro name within left and right single quotes (`localname’). Global macros are similar to

local macros, but once defined, they remain in memory and can be used by other programs.

To refer to a global macro’s contents, we preface the macro name with a dollar sign

($globalname).

The LIS “file names” ($uk99p, $us00p, etc.) are actually global macros that represent the

full path of the data set you wish to use. By using macros instead of the full path names, it

saves the user a lot of typing and also allows LIS to move and reorganize files without

making users update their programs.

 You will need to keep exactly the same variables for each of the five datasets. Rather than

repeating the list of variables each time you open a new dataset, you can assign to a macro

the names of those variable by using the Stata macro global. This macro assigns strings to

specified global macro names, so that, once it has been created, each time the macro name is

typed (preceded by the dollar sign) during the Stata session, Stata reads the string which was

assigned to it. When you create a global macro, you will write:

global <mname> "<varlist>"

and when you recall it later on, you will write $<mname>.

 The simplest way to repeat a series of commands several times in Stata, is to write those

commands within a Stata program using the commands program define <progname>

before the first of the commands of the series, and end after the last one, and then type the

program name each time you want to run the series of commands.

program define <progname>

<series of commands>

end

 To create a dummy variable which takes the value of 1 if a certain condition is satisfied, you

can simply generate a new variable equal to the condition using the Stata command

generate (abbreviated by gen). If the condition is satisfied, the variable takes the value 1,

otherwise it takes the value 0. Your final command should look something like this:

gen byte <newvarname> = <condition>

 In this particular case, you may find the Stata function inrange useful to get your results:

gen byte adult=inrange(page,16,.)

Note that this will create a variable which takes the value 1 for each person aged 16 and

above, excluding the missing values, and zero for all the others (hence including the missing

values).

 The following is a template you can use for this activity:

global keepit "<variable list>"

program define dofiles

<create a dummy called adult>

<find the median of pgwage for adults with positive earnings>

<find the median of pnwage for adults with positive earnings>

<find the median of pself for adults with positive self-employment

earnings>

end

use $keepit using <dataset1>, clear

dofiles

use $keepit using <dataset2>, clear

dofiles

…

Note the clear option at the end of the command. Since you are using multiple files, you

need to remember to clear the old file from memory before calling the new one.

 For more information about whether the LIS datasets report gross or net values, go to

Luxembourg Income Study (LIS) List of net income datasets (under the heading

Information by Country).

 Stata reminder on the foreach loop

- Writing the foreach loop: you can use the foreach command to repeat the same

commands for multiple data sets (you could actually loop over variables as well). The

foreach statement must be immediately followed on the same line by an open bracket

({), while the closing bracket (}) has to be on the last line (after the series of commands)

on its own:
foreach <loopname> in <arguments over which to loop> {

 <commands over several lines>

}

- Calling the arguments within a foreach loop: in the foreach statement, the

<loopname> is a local macro that represents the list that follows the word in. and hence

can be called with the standard way for local macros (`<loopname>’).

Program

di "** BASICS II – Exercise 3 **"

di "** Part 1 **"

global keepit "pweight page pgwage pnwage pself"

program define dofiles

 gen byte adult=inrange(page,16,.)

 sum pgwage [w=pweight] if adult & pgwage>0, de

 sum pnwage [w=pweight] if adult & pnwage>0, de

 sum pself [w=pweight] if adult & pself>0, de

end

use $keepit using $us00p, clear

dofiles

use $keepit using $uk99p, clear

dofiles

use $keepit using $mx00p, clear

dofiles

di "** Part 2 **"

foreach file in $br06p $co04p $gt06p $pe04p $uy04p {

 di "`file'"

 use $keepit using `file', clear

 dofiles

}

Results

 Gross wage

earnings Net wage earnings

Self-employment

earnings

UK99 13,513 10,628 10,400

US00 25,000 NA 12,500

MX00 NA 27,400 14,400

BR06 5,865 NA 6,000

CO04 4,320,000 NA 2,400,000

GT06 12,000 NA 6,000

PE04 NA 5,986 2,980

UY04 NA 54,042 42,577

Answers to questions 1-2:

1. Country with the highest median wages from employment

Because incomes are expressed in national currencies, it is not possible to compare values

directly.

2. Whereas it is obvious from the results above that MX00 contains only net incomes and US00

only gross incomes (as only one of the two wage variables is filled), for the UK99 dataset it

is necessary to look at the documentation on-line to see that all other income variables are

reported gross of taxes and contributions (with, in addition, the net wage variable).

Comments

 Please note that all the results are given in nominal terms and in national currency. In order

to make a direct comparison, convert these values to a common currency with the use of

exchange rates (or PPPs) and deflators. LIS leaves it up to the researcher to choose the

exchange rates and/or deflators that are best suited to his/her purpose.

 LIS detailed income variables are ideally filled with gross values (before taxes and

mandatory social contributions are deducted), so that their overall sum (reported in summary

income variable gi) is equal to total gross income, from which taxes and contributions are

subtracted to get to the final net disposable income figure (dpi). In some instances though,

the original datasets only report net incomes: whereas total gross income is then not

available (and the summary income variable gi is thus left empty), total final net disposable

income figure is obtainable by aggregating all the net incomes (and this is exactly what dpi

includes). In those cases, each LIS detailed income variable will contain net values instead

of gross; only for wages there are two separate variables for those two amounts. For all other

variables you need to take care when comparing across datasets that you are not comparing

two different concepts of income.

