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Part I 

Inequality, poverty, and social policy 

 

Overall Plan and Structure of the Exercise 

The next seven exercises demonstrate the use of the LIS data. These exercises will lead you through 

the process of developing a comparative research project that examines inequality and poverty 

across countries. Each of the exercises introduces new concepts related to the datasets and the 

programming techniques needed to make use of the data. By the end of the last exercise, you will 

produce a complete program that returns results on poverty and inequality for a selection of six LIS 

countries. 

Each exercise builds on the one that comes before it. It is intended that you will begin each new 

activity by returning to the program you have written in the previous exercise, and modifying it to 

satisfy the requirements of the new exercise. Each exercise contains questions that you can answer 

with the new results you produce. The solutions included with each exercise include an example 

program, with bolded sections indicating code that has been added for that exercise.  

Unless otherwise instructed in the lesson, you should not remove variables or lines of code from 

your program, even if it is not needed for the current exercise. Variables and procedures that are 

introduced in earlier lessons may be needed later. In particular, all of the variables that are 

introduced in Exercise 2 will eventually be needed to complete the final exercise, even if they are 

not all required for the lessons in between.  

The analysis shown here is simplified somewhat, compared to what might be done in an actual LIS 

Working Paper. Some choices have also been made in order to demonstrate particular aspects of 

the LIS data. However, these exercises provide a starting point for researchers who want to develop 

an analysis of the data based on their own research questions.  

Research Questions 

Since the beginning of the LIS project, one of the most prominent objects of research using the 

data has been the effect of government tax and transfer programs on poverty and inequality. The 

first substantive paper in the LIS Working Papers series, published in 1985, analyzed the pre- and 

post-transfer poverty rate in Sweden, the United Kingdom, Israel, the United States, Norway, 

Canada, and West Germany. 1 The second substantive paper compares the distribution of income 

                                        

1  Richard Hauser, Lee Rainwater, Martin Rein, Gaston Schaber, Timothy Smeeding. “Poverty in Major Industrialized 

Countries”. LIS Working Paper No. 2 – Jul 1985.  http://www.lisdatacenter.org/wps/liswps/2.pdf 
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across these same seven countries.2 

States affect the income distribution through several different types of policy, which are captured 

in the LIS data: 

• Progressive taxation 

• Social insurance programmes linked to employment, such as public pensions, 

unemployment insurance, and sickness pay 

• Universal benefits provided irrespective of employment, income or assets 

• Social assistance benefits for especially needy individuals or households 

The exercises in this section assess the impact of these policies in different countries on both 

poverty and income inequality. We will measure incomes due to labour market income, capital 

income, and private transfers, and compare this to incomes after income taxes and social insurance 

contributions as well as government transfers are accounted for. Within the category of 

government policies, we will separate the effect of payroll taxes, social insurance, and universal 

benefits on the one hand, and social assistance benefits on the other. We will measure the 

proportion of the population that is poor according to these different income measures, where 

poverty is defined relative to median level of income within a country. We will also compare income 

inequality using one of the most popular and longstanding inequality measures, the Gini coefficient.  

As LIS has grown, the analysis of government policy, poverty, and inequality has been updated for 

more countries and more recent years.3 Recently, LIS expanded beyond the rich countries that have 

long made up the core of the project, and began adding data from middle income countries. This 

gives researchers the opportunity to compare income and poverty in these countries to the 

patterns seen in rich countries that have been much more heavily studied. 

For this exercise, we will begin by analyzing the data from Guatemala, one of the recently-added 

middle income countries. We will then compare Guatemala to five other countries: the United 

States, Denmark, Poland, Slovenia, and Israel. These specific countries have been chosen in part 

for pedagogical reasons. However, they will also produce substantively interesting comparisons, 

because they represent a wide range of national income levels and welfare state regime types. 

After completing the final exercise, you will be able to answer the following questions: 

  

                                        

2  Michael O'Higgins, Gunther Schmaus, Geoffrey Stephenson. “Income Distribution and Redistribution”. LIS Working 

Paper No. 3 – Jun 1985. http://www.lisdatacenter.org/wps/liswps/3.pdf 

3  For a recent example, see Timothy Smeeding, “Government Programs and Social Outcomes: The United States in 

Comparative Perspective”. LIS Working Paper No. 426 – May 2005. http://www.lisdatacenter.org/wps/liswps/426.pdf 
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• Which of the six countries in the study have the highest levels of income inequality and 

poverty before taxes and transfers are accounted for? Does this change when taxes and 

transfers are included? 

• Which type of government policy has a larger impact on inequality and poverty in each 

country: taxes, social insurance, and universal benefits, or targeted social assistance? 
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1. Accessing the LIS databases: the Job Submission Interface (JSI) 

- Submit a LIS job and get basic descriptive statistics for one variable 

2. Sample selection and weighting 

- Introduce the list of variables to be used 

- Select the sample and eliminate cases with missing data 

- Produce weighted and unweighted descriptive statistics for variables 

3. Working with household income variables: top and bottom coding and equivalence 

scales 

- Top and bottom coding income data to remove outliers 

- Correcting income for household size using equivalence scales 

4. Inequality: the Gini Index 

- Calculating the Gini coefficient  

5. Relative poverty rates 

- Calculating relative poverty 

6. Comparing income concepts 

- Introducing three concepts of income 

- Inequality and poverty before and after taxes and transfers 

7. Comparing multiple countries  

- Extending the analysis to multiple countries 

- Working with net vs. gross income data 

 

 



 

6  

 

1. Accessing the LIS Database: the Job Submission Interface (JSI) 

 

Goal 

This exercise introduces the Job Submission Interface (JSI), which we will be using to work with LIS 

data in all of the subsequent exercises.  

The JSI is a secure Java application that allows researchers to:  

- write, submit and view job requests (and corresponding outputs);  

- track the status of the job requests in process ('received', 'processing', 'set for review', 

‘refused’, etc.), and 

- access the history of all job requests ever sent. 

In this exercise we will use the JSI to open a dataset and produce basic descriptive statistics. 

 

Activity 

Launch the Job Submission Interface (JSI) application and logon to it with your LIS account.  

Submit a simple program to display descriptive statistics (number of valid observations, mean, 

minimum, maximum) for the household-level income variable dhi, for Guatemala 2006. dhi, or 

disposable household income, contains the total monetary and non-monetary current income for 

the household, net of income taxes and social security contributions. It is a harmonised variable 

that is available for all datasets.  

Track the status of your job. 

View the resulting listing. 

Go to the Job Library window and discard the job; use the advanced search tool to get it back. 

Question: How many valid observations (non-missing) are in this dataset for dhi?  

 

Guidelines 

� Once connected to the Job submission Interface, there are three main tasks that may be carried 

out:  
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1. Submit jobs through the Job Session window. 

- Select a project (LIS, LWS or LES).  

- Select a statistical package (SAS, SPSS, Stata, or R).  

- When submitting a job (Job Session window), always add a subject line.  

- Write your code.  

- Click on the submit button.  

2. Work with Today's Jobs (Today Jobs window.)  

- Watch the status of jobs currently sent to LISSY in the 'jobs in process' panel (top-left). 

- View the jobs returned by LISSY.  

- Click on a job in the 'jobs returned' panel (bottom-left). 

- Click on the 'view job' button.  

- Click on the 'job text' or 'listing' tabs, respectively, of the right panel to see the request and 

its output.  

- Re-submit a selected job by clicking on the 'edit in job submission' button at the bottom-

right of the window. 

3. Manage (view, clean and search) all job requests ever sent in the Job Library window.  

- View jobs sent over a specific time period. 

- Clean the library by discarding useless job requests ('discard' button).  

- Search jobs by keywords.  

- Re-submit a selected job by clicking on the 'edit in job submission' button at the bottom-

right of the window. 

� When you open a LIS dataset, use the correct file reference for the country/year you wish to use.  

For example: 

df ← read.LIS('gt06p')   

For more information about the syntax of country/year file reference, see the job submission 

instructions on the LIS web site (Data Access → Job Submission). For a list of available data sets 

and their 2digit country codes, go to: 

 http://www.lisdatacenter.org/data-access/lissy/job-submission/using-r-on-the-lissy-system/  

� R reminders 

� To access a variable within a data frame, you can use either the syntax df$<variable> or 

df[['<variable>']] 

� You can get basic descriptive statistics for a variable (such as the minimum, maximum, 

mean and median) using summary(<variable>). The option digits is needed to ensure that 

the display precision is great enough,   summary(<variable>, digits=<#>). 
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� To get the total number of non-missing observations of a variable, you can use 

sum(!is.na(<variable>)). This creates a vector which is TRUE whenever the variable is not 

missing, and then gives you the sum of that vector, i.e., the number of non-missing 

observations. 

� If you do not receive your job in the expected amount of time, it means that there is a long 

queue of jobs on LISSY. In that case, resending your job, or sending several other ones while 

waiting to receive the first one, will only increase the queue and hence your waiting time. 

Remember to wait to get your results before sending a new job! 
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Program 

 

df <- read.LIS('gt06h') 

print(summary(df$dhi, digits=10)) 

print(sum(!is.na(df$dhi))) 

 

 

Results 

 Number of valid 

observations 

Mean Minimum Maximum 

Dhi 13,664 39,468 -184,160 2,727,846 

 

Question: How many valid observations (non-missing) are in this dataset for dhi?  

� There are 13,664 valid observations. 

 

 

Comments 

� It is important to pay close attention to sample sizes in order to make sure you have enough 

data to make stable estimates. When working with small datasets, or small sub-samples of 

datasets, always check the size of the sample underlying each statistic you have computed. 

� As you can see in the results, the disposable household income dhi can be negative. This 

happens in cases where the data provider kept losses as such rather than applying bottom 

coding techniques. This typically happens with incomes from self-employment or capital 

income; in rare circumstances it happens that taxes are higher than gross income due to 

different income reference periods or miscalculation of taxes.  
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2.  Sample selection and weighting 

 

Goal 

This exercise introduces the variables that we will be using in the rest of our analysis and 

concentrates on sample selection and the use of weights. 

Sample selection – The final objective of this exercise is to compare incomes before and after 

government intervention. In order to be sure that the comparison is correct, users should ensure 

that they use exactly the same sample when calculating statistics for the pre- and post-government 

intervention. It is thus important to begin by selecting a sample which can be used for the entire 

analysis. For this reason, we will drop from the analysis not only cases which have missing values in 

the variable of interest to the specific statistic being calculated at each step, but all the cases that 

have a missing value in any of the variables of interest for the whole analysis. 

Use of weights - Comparative researchers are typically interested in the characteristics of national 

populations, not the samples provided.  It is very important to understand and use sample weights 

correctly in order to get representative results for the total underlying population. This exercise 

shows the differences in statistics between the unweighted sample and the weighted population. 

 

Activity 

As in the previous exercise, we will continue working with the Guatemala 2006 (GT06) data. Modify 

your previous program to select only the following variables in addition to dhi: household weight 

(hpopwgt), number of household members (nhhmem), gross or net income information 

(grossnet), factor income (factor), work-related insurance transfers (hitsi), universal benefit 

income (hitsu), assistance benefit income (hitsa), private transfers (hitp) and tax and social security 

contribution expenditures (hxit). 

Produce two different sets of descriptive statistics for the variables you have selected:  

� For continuous variables, the statistics - unweighted, and weighted by person - should 

include the number of observations, the mean, the median, the minimum and the 

maximum;  

� For categorical variables, you should produce a frequency table.  

Next, drop all cases for which dhi or any of its income and expenditure sub-components is missing 

And see how many cases have missing data  

Question: What currency unit is used for the income variables in this dataset? 

Question: What effect does applying the weights have on the median of disposable household 

income? 

Question: What percentage of cases is being dropped from the dataset?  
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Question: In subsequent exercises, we will be comparing incomes before and after accounting for 

different kinds of government transfers. What is the difference between work-related 

insurance transfers, universal benefits, and assistance benefits? 

Question: In subsequent exercises, we will separate social assistance transfers from social 

insurance/universal benefits. Based on the statistics you have produced, which type of 

transfer do you think has a larger effect on inequality and poverty in Guatemala? 

Question: What specific government programs are included within the “social assistance” variable 

for Guatemala? 

Question: How many different values does the variable grossnet take in this dataset? How might 

this variable be useful? 

 

Guidelines 

� Note to R users: R is a very flexible language, and there are typically many ways to code the 

same operation. The tips in these lessons suggest one method of achieving some of the 

exercises goals, but if you are familiar with other techniques you should feel free to use them. 

Note that for these early lessons, which concentrate on simple descriptive statistics, R may be 

somewhat more cumbersome to use than other statistical packages which are designed to make such 

simple estimates very easy to retrieve. This is in contrast to the later lessons, where R's power and 

flexibility make it possible to produce more complex estimates very quickly and compactly. 

� Use of weights in basic descriptive is not include in R base but R packages, such as Hmisc, 

include many functions useful for working with weighted data. Anyway, to avoid using 

packages you may not be familiar with, we prefer to create simple functions from scratch. 

For instance here is a simple function to generate a weighted mean.   

wmean <- function(x, weight) { 

  y     <- x[which(!is.na(x))] 

  wgt   <- weight[which(!is.na(x))] 

  wmean <- sum(y*wgt/sum(wgt)) 

  return(wmean) 

} 

Note that this function is not robust in the sense that it does not test for missing arguments 

when it is called and … so forth. But you may want to re-use and improve it for later your 

own coding purpose  

� Use the option “labels=FALSE” with read.LIS to return only numeric codes rather than value 

labels, which will make recoding easier later on.  
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� You can use the “vars” argument to the read.LIS function to keep only certain variables 

(columns): 

� df <- read.LIS(‘gt06’, labels=FALSE, vars=<varlist>) 

� This avoids unnecessary burden on the machine so that submitted jobs will run faster.  You 

can also use the “subset” to keep only certain observations. For example, to select only 

cases with non-missing household income: 

� df <- read.LIS(‘gt06’, labels=FALSE, subset=”complete.cases(dhi)”) 

  



 

13  
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Program 

wmean <- function(x, weight) { 

  y     <- x[which(!is.na(x))] 

  wgt   <- weight[which(!is.na(x))] 

  wmean <- sum(y*wgt/sum(wgt)) 

  return(wmean) 

} 

wNtile <- function(var, wgt, split) { 

  x  <- var[order(var)] 

  y  <- wgt[order(var)]  

  z  <- cumsum(y) / sum(y) 

  cop  <- rep(NA,length(split)) 

  for (i in 1:length(cop)) { 

    cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

  } 

  return(cop) 

} 

 

vars <- c('dhi','factor','hitsi','hitsu','hitp','hxit','hpopwgt','nhhmem','grossnet') 

df   <- read.LIS('gt06h', labels=FALSE, vars=vars) 

print(row_total <- nrow(df)) 

print(row_drop  <- with(df, length(which((complete.cases(dhi,factor,hitsi,hitsu,hitp,hxit) == 

TRUE))))) 

round(((row_total - row_drop) / row_total) * 100, digits = 2) 

 

for (x in c('nhhmem','grossnet')) { 

 cat(toupper(x)) 

 print(table(df[[x]], useNA = 'ifany')) 

 print(paste(round(prop.table(table(df[[x]], useNA = 'ifany')) * 100, digits = 2), "%", sep = 

"")) 

 cat(paste(" "), sep = '\n') 

} 

for (x in c('hpopwgt','dhi','factor','hitsi','hitsu','hitp','hxit')) { 

 df1 <- df[!is.na(df[[x]]), ] 

 print(c(toupper(x))) 

 print(c(nb_obs = sum(!is.na(df1[[x]])))) 

 print(summary(df1[,x], digits = 5)) 

 print(c(weighted_mean = round(wmean(df1[[x]], df1$hpopwgt*df1$nhhmem), digits = 0),   

weighted_median = round(wNtile(df1[[x]], df1$hpopwgt * df1$nhhmem, split = 0.5), digits = 0))) 

  cat(" ", sep = '\n')   

} 
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Results 

 

number of 

observations percent 

Valid  13,664 99.84 

Missing 22 0.162 

Total 13,686 100 

  

hhmem  
number of 

observations percent 

cumulative 

percent 
 

1 646 4.72 4.72  

2 1,345 9.83 14.55  

3 2,004 14.64 29.19  

4 2,376 17.36 46.55  

5 2,277 16.64 63.19  

6 1,738 12.7 75.89  

7 1,218 8.9 84.79  

8 856 6.25 91.04  

9 538 3.93 94.97  

10 284 2.08 97.05  

11 183 1.34 98.39  

12 93 0.68 99.06  

13 50 0.37 99.43  

14 44 0.32 99.75  

15 20 0.15 99.9  

16 6 0.04 99.94  

17 3 0.02 99.96  

18 1 0.01 99.97  

19 2 0.01 99.99  

21 2 0.01 100  

Total 13,686 100   
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grossnet 

number of 

observations percent 

cumulative 

percent 

[110] taxes and contributions collected 13,686 100 100 

Total 13,686 100  

 

Unweighted 

 
number of 

observations mean median minimum maximum 

hpopwgt 13,686 193.85 119 2 2,657 

dhi 13,664 39,468 25,388 -184,160 2,727,800 

factor 13,664 35,864 20,722 0 3,865,200 

hitsi 13,664 1,099.3 0 0 160,000 

hitsu 13,664 48.34 0 0 46,800 

hitp 13,664 3,653 0 0 468,400 

hxit 13,664 2,191.5 0 0 1,137,300 

 

Weighted 

 mean median 

hpopwgt 444 295 

dhi 48,004 31,160 

factor 44,593 26,400 

hitsi 1,212 0 

hitsu 66 0 

hitp 3,895 0 

hxit 2,953 0 

 

 

 

 

Question: What currency unit is used for the income variables in this dataset? 

• The currency unit in this dataset is the Guatemalan Quetzal.  This information can be found 

on the LIS web site at Our Data → Documentation → List of Dataset Information 

Question: What effect does applying the weights have on the median of disposable household 

income? 

• The median of unweighted dhi is 25,388 Quetzals, while the median of weighted dhi is 

31,160 Quetzals, suggesting that low-income households are over-represented in the 

sample. 

Question: What percentage of cases is being dropped from the dataset?  



 

17  

 

• There are 22 cases with missing data, or 0.16 percent of the total number of cases in the 

dataset.  Note that you should always be careful if you see a large amount of missing data, 

as it could bias your estimates. 

Question: In subsequent exercises, we will be comparing incomes before and after accounting for 

different kinds of government transfers. What is the difference between work-related insurance 

transfers, universal benefits, and assistance benefits? 

• These concepts are defined in the LIS Variable Definitions document. Look in the tab marked 

“Current income”, under the headings for variables ITSI, ITSU, and ITSA. 

◦ Work-related insurance transfers: Monetary transfers stemming from systems where 

the eligibility is based on the existence and/or the length of an employment relationship; 

in most cases the benefits are financed by contributions paid by employers, workers or 

both, and their amount is usually dependent on either the previous earnings or the 

previous contributions; 

◦ Universal benefits: Monetary transfers stemming from public programmes that provide 

flat-rate benefits to certain residents or citizens, provided that they are in a certain 

situation, but without consideration of income, employment or assets; note that in 

some cases the benefit amount may also depend on the other incomes of the individuals, 

which at the limit may result on some proportion of the population at the upper end of 

the income distribution to be excluded from receipt. 

◦ Assistance benefits: Monetary and non-monetary transfers stemming from public 

programmes that provide benefits especially targeted to needy individuals or 

households (i.e. with a strict income or assets test); the amount of the benefits is either 

flat rate or based on the difference between the recipient income and a standard 

amount representing the minimum subsistence needs as guaranteed by the 

government. 

Question: What specific government programs are included within the “social assistance” variable 

for Guatemala? 

• If you look at the Institutional documentation for Guatemala 2006 on the LIS web site (Our 

Data → LIS Database → By country → Guatemala → 2006  -under the heading Institutional 

Information), by selecting on the LIS variables pertaining to Social Assistance in the column 

“LIS Variables – Main set”, you will see that the overall Social assistance variable for this 

dataset includes the following programmes: School transport allowance (Bono de transporte 

escolar), study grants (Becas escolares), scholarships from Child attention programme 

(Programa de atención a la niña), School material kit (Bolsa de útiles escolares), Food-related 

benefits from Social Assistance (leche en polvo, vaso de leche, vaso de atol, alimentación 

escolar), Health programme from Social Assistance and in-kind transfers of goods from 

public institutions.  
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Question: How many different values does the variable grossnet take in this dataset? How might 

this variable be useful? 

• The variable grossnet has the same value for every case (110, “taxes and contributions 

collected”.) By looking at this variable, you can learn what type of gross or net income 

information is contained in this variable, even without looking at the documentation. This 

variable will also be useful when working with multiple datasets that may contain either 

gross or net income.  
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3.  Working with household income variables: top and bottom 

coding and equivalence scales 

 

Goal 

In order to compare incomes across countries, we need to make sure that our variables are fully 

comparable. In this exercise, you will apply top- and bottom-codes to remove extreme values. You 

will then create an equivalised  income variable that adjusts for household size.  

Top and bottom coding - Many inequality measures are sensitive to the values at the bottom and/or 

top of the income distribution, and some are not defined for non-positive values of income 

(e.g., any measure that calculates a logarithm). Applying top and bottom-codes (often 

referred to as ‘winsorising’) will avoid this problem, as well as ensuring comparability 

between datasets that may have originally had different top- and bottom-codings. 

Equivalence scales - In order to get measures of poverty and/or income inequality in a population, it 

is necessary to compare income across different types of households.  It is not logical to directly 

compare total household income between households of different sizes and composition. 

Suppose you observe three levels of income (A, B, and C), where A>B>C.  You cannot state that a 

household earning A is better off than one earning B unless you know the two households are 

similar in composition.  For example, a family of four adult members receiving A is not 

necessarily better off than a couple with two children who receive B, and the family receiving 

B may not be better off than the childless couple receiving C. 

For this reason, total household income needs to be adjusted to make it comparable across 

different households. This exercise gives one example of “equalising” households using one 

specific equivalence scale. 

 

Activity 

Keep the code from your previous exercise that you used to drop cases with missing data.  

Create a new variable dhiT, a top- and bottom-coded version of the original dhi. Bottom-code by 

setting all values less than zero to zero. Top-code by setting all values greater than ten times the 

median of dhi to ten times the median of dhi. 
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Now, create another new variable, edhi, an equivalised version of top- and bottom-coded 

disposable household income. We will correct for household size by applying the “LIS equivalence 

scale” (i.e., the square root of the number of household members). 

Next, create a measure of per-capita income, cdhi, by dividing household income (un-equivalised, 

but top- and bottom-coded) by the number of household members. 

Produce summary statistics showing the mean, median, minimum, and maximum of the four 

income variables: dhi, dhiT, cdhi , and edhi. 

Using the results returned from LISSY, fill out the following table:  

 Household 

income (no top or 

bottom codes) 

Household 

income Per capita income 

Equivalised 

income 

Mean      

Median     

Minimum     

Maximum     

Question: Which of these four versions of the income variable contain negative values? 

Question: Relative to household income and per capita income, how large are the mean and 

median of equivalised income? 

Question: How does applying the top and bottom code affect the mean and median of household 

income? 

 

Guidelines 

� As we continue to build up to our final program, some of the code from the previous exercises 

will no longer be necessary. (For example, the code that produced the summary statistics in the 

previous exercise). You can choose to delete this code from your program in order to make it 

shorter. However, if you would like to keep a line code but stop it from being executed, simply 

place a # before it. 

� This exercise does not use all of the variables that were used in the previous section. You should 

continue to keep all of those variables when you open the dataset, however, because they will 

be needed in future exercises.  
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� To equivalise income, divide the total household income by the value of the equivalence scale 

for each observation. To generate LIS equivalised income: 

df$edhi <- df$dhiT /(df$nhhmem^0.5)  

� Be careful when using weights.  Make sure that the weight matches your unit of analysis.  Weigh 

by hpopwgt for variables which are intrinsically at the household level (e.g., dhi) and by 

hpopwgt*nhhmem (to account for household size) for variables that are conceptually 

meaningful at the person level (e.g., per capita and equivalised income).  
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Program 

wmean <- function(x, weight= NULL) { 

  if (is.null(weight))  

    weight <- rep(1, length(x)) 
  y     <- x[which(!is.na(x))] 
  wgt   <- weight[which(!is.na(x))] 

  wmean <- sum(y*wgt/sum(wgt)) 

  return(wmean) 

} 
wNtile <- function(var, wgt = NULL, split) { 

  if (is.null(wgt))  

      wgt <- rep(1, length(var)) 

  x  <- var[order(var)] 
  y  <- wgt[order(var)]  

  z  <- cumsum(y) / sum(y) 
  cop  <- rep(NA,length(split)) 
  for (i in 1:length(cop)) { 

    cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

  } 

  return(cop) 
} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 
  return(tb) 

} 
setups <- function(data_file) { 
  vars    <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitsa', 'hitp', 'hxit', 'hpopwgt', 'nhhmem', 

'grossnet') 

  subset  <- 'complete.cases(dhi, factor, hitsi, hitsu, hitsa, hitp, hxit)' 

  df      <- read.LIS(data_file, labels=FALSE, vars=vars, subset=subset) 
  botline <- 0  

  topline <- 10 * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhiT  <- topBottom(df$dhi, botline, topline) 

  df$edhi <- df$dhi / df$nhhmem^0.5 
  df$cdhi <- df$dhi / df$nhhmem 

  return(df) 
} 

 
df <- setups('gt06h') 

for (x in c('dhi', 'dhiT')) { 

  cat(paste("VARIABLE: ", toupper(x), sep=""), sep = '\n') 
  cat(paste("Average: " , format(round(wmean(df[[x]]    , df$hpopwgt)     , digits = 0), big.mark 

= ",")), sep = '\n') 

  cat(paste("Median : " , format(round(wNtile(df[[x]], df$hpopwgt, 0.5), digits = 0), big.mark = 

",")), sep = '\n') 
  cat(paste("Minimum: " , format(round(min(df[[x]]), digits = 0), big.mark = ",")), sep = '\n') 

  cat(paste("Maximum: " , format(round(max(df[[x]]), digits = 0), big.mark = ",")), sep = '\n') 
  cat(" ", sep = '\n') 

} 
for (x in c('cdhi', 'edhi')) { 

  cat(paste("VARIABLE: ", toupper(x), sep=""), sep = '\n') 

  cat(paste("Average: " , format(round(wmean(df[[x]]    , df$hpopwgt * df$nhhmem)     , digits = 
0), big.mark = ",")), sep = '\n') 
  cat(paste("Median : " , format(round(wNtile(df[[x]], df$hpopwgt * df$nhhmem, 0.5), digits = 0), 

big.mark = ",")), sep = '\n') 

  cat(paste("Minimum: " , format(round(min(df[[x]]), digits = 0), big.mark = ",")), sep = '\n') 
  cat(paste("Maximum: " , format(round(max(df[[x]]), digits = 0), big.mark = ",")), sep = '\n') 

  cat(" ", sep = '\n') 
  } 
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Results: 

 Household 

income (no top or 

bottom codes) 

Household 

income Per capita income 

Equivalised 

income  

Mean  46,576 44,745 9,157 20,010 

Median 29,520 29,520 5,567 13,321 

Minimum -184,160 0 0 0 

Maximum 2,727,846 295,200 289,510 289,510 

Question: Which of these four versions of the income variable contain negative values? 

• Only the income variable without top or bottom codes contains negative values, which are 

removed by applying a bottom-code. This will be important in the next exercise on 

inequality. The measure of inequality we will be using, the Gini coefficient, does not allow 

negative values. Removing negative values also allows for the commonly-used logarithmic 

transformation of income.  

Question: Relative to household income and per capita income, how large are the mean and 

median of equivalised income? 

• The mean and median values for equivalised income fall between those for household 

income and those for per capita income. The equivalising formula of dhi/(nhhmem^0.5) is 

a compromise between assigning all individuals their household income (dhi/nhhmem^0) 

and assigning them a per capita income (dhi/nhhmem^1).  

Question: How does applying the top and bottom code affect the mean and median of equivalised 

income? 

• Applying top and bottom codes makes the mean lower but does not affect the median. 

Means can be very sensitive to extreme values, so median values are often preferred as a 

measure of central tendency. 
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4.  Inequality: the Gini Index 

 

Goal 

This exercise introduces the Gini index, which is one of the most commonly used income inequality 

indicators. We will be using the Gini coefficient as our measure of inequality in subsequent exercises, 

in order to compare inequality across countries and across different concepts of income.  

 

Activity 

Calculate the Gini index on total disposable income for Guatemala in 2006, using variables created 

in the previous exercise. Start with your program from the previous exercise, which will drop 

observations with missing data, apply top and bottom codes, and create variables containing 

equivalised disposable income and disposable income per capita. 

Calculate the Gini coefficient for the winsorised (or bottom- and top-coded) versions of household 

income, per capita income, and equivalised income, and fill out the following table: 

 Household income Per capita income Equivalised income 

Gini coefficient    

Question Which shows greater inequality: household income, per capita income or equivalised 

income? What does this suggest about the possible relationship between income and 

household size?  

 

Guidelines 

� To make the most of R, it is advisable to break your code into functions as much as possible. 

In future exercises, we will adapt our program in order to make use of functions. For this 

exercise, we will provide a function definition that you can include in your code to produce 

weighted Gini coefficients: 
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gini <- function(x,weight) { 

  ox     <- order(x) 

  x      <- x[ox] 

  weight <- weight[ox]/sum(weight) 

  p      <- cumsum(weight) 

  nu     <- cumsum(weight*x) 

  n      <- length(nu) 

  nu     <- nu/nu[n] 

  res    <- sum(nu[-1]*p[-n])-sum(nu[-n]*p[-1]) 

return(res) 

} 

After it has been defined, you can call this function just as you would call any built-in R 

function, for example: 

 gini(df$dhi, df$hpopwgt)) 

This function is derived from the reldist package, http://cran.r-

project.org/web/packages/reldist/. 
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Program 

gini <- function(x,weight) { 

  ox     <- order(x) 

  x      <- x[ox] 

  weight <- weight[ox]/sum(weight) 

  p      <- cumsum(weight) 

  nu     <- cumsum(weight*x) 

  n      <- length(nu) 

  nu     <- nu/nu[n] 

  res    <- sum(nu[-1]*p[-n])-sum(nu[-n]*p[-1]) 

return(res) 

} 

wNtile <- function(var, wgt, split) { 

  x  <- var[order(var)] 

  y  <- wgt[order(var)]  

  z  <- cumsum(y) / sum(y) 

  cop  <- rep(NA,length(split)) 

  for (i in 1:length(cop)) { 

    cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

  } 

  return(cop) 

} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 

  return(tb) 

} 

setups <- function(data_file) { 

  vars    <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitp', 'hxit', 'hpopwgt', 'nhhmem', 'grossnet') 

  subset  <- 'complete.cases(dhi, factor, hitsi, hitsu, hitp, hxit)' 

  df      <- read.LIS(data_file, labels=FALSE, vars=vars, subset=subset) 

  botline <- 0  

  topline <- 10 * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhi  <- topBottom(df$dhi, botline, topline) 

  df$edhi <- df$dhi / df$nhhmem^0.5 

  df$cdhi <- df$dhi / df$nhhmem 

  return(df) 

} 

 

  df <- setups('gt06h') 

  round(gini(df$dhi , df$hpopwgt)          , digits = 3) 

  round(gini(df$cdhi, df$hpopwgt*df$nhhmem), digits = 3) 

  round(gini(df$edhi, df$hpopwgt*df$nhhmem), digits = 3) 
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Results 

 Household income Per capita income Equivalised income 

Gini coefficient 0.495 0.527 0.489 

Question: Which shows greater inequality: household income, per capita income or equivalised 

income? What does this suggest about the possible relationship between income and 

household size?  

• The Gini is lower for equivalised income, than the Gini for household income, which in turn 

is lower than the Gini for per-capita income. This reflects the fact that poorer households in 

Guatemala tend to be larger than richer households. Because the LIS equivalence scale 

assumes some economies of scale in large households, it produces a lower estimate of 

inequality than a per-capita measure.  
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5.  Relative poverty rates 

 

Goal 

In order to get any measure of poverty, it is essential to make some assumptions concerning the 

criteria based on which to define poverty. The approach used by LIS (and most commonly adopted 

in the literature), is that of creating a relative poverty line based on the level and distribution of 

household disposable (equivalised) income in the total population. Households are classified as 

poor or non-poor on the basis of whether their income is lower or higher than the relative poverty 

line. 

Once poor households are identified, you can create an indicator to help identify the proportion of 

poor households (or individuals) and to measure the level of poverty. The choice of the indicator 

used will mainly depend on the purpose of the research. In this exercise, we will calculate the 

relative poverty rates of households and individuals in the Guatemala 2006 data.  

 

Activity 

Add code to your program to produce an indicator for poverty. Define the poverty line as 50% of 

the median equivalised income. Calculate both the percentage of households in poverty and the 

head count ratio (defined as the percentage of individuals living in poor households), and complete 

the following table.  

 Households Individuals 

Relative poverty rate   

Question: Are there more poor households or more poor individuals? What can you infer from 

this? 

 

Guidelines 

� From this point forward, we will be working exclusively with equivalised income, so the sections 

of your code relating to per-capita income can now be commented out or removed. The code 

for producing the Gini coefficient of equivalised income is not needed for this exercise, but will 

be required again in the next exercise.  
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� In R, you can take the sum of a logical vector, and the result will the proportion of elements in 

that vector which have the value TRUE. This means that you can place a logical comparison 

inside a sum statement to produce a poverty rate, as in the following example: 

sum((df$edhi < 0.5 * wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt) 

/ sum(df$hpopwgt)) 

This code computes the weighted median income, sum the equivalised disposable income that is 

for those cases that are below half of that median, and then divides the result by the sum of the 

weights, which ends up to the percentage in relative poverty.  

� Whether your poverty rate is the proportion of individuals or households in poverty depends on 

which weighting you use. Use hpopwgt if you want to measure household poverty, and 

hpopwgt*nhhmem if you are interested in individual poverty. If you use the individual-level 

weighting, you will produce the Head Count Ratio (HCR), which is the percentage of poor 

individuals in the total population. 
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Program 

wNtile <- function(var, wgt, split) { 

  x  <- var[order(var)] 

  y  <- wgt[order(var)]  

  z  <- cumsum(y) / sum(y) 

  cop  <- rep(NA,length(split)) 

  for (i in 1:length(cop)) { 

    cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

  } 

  return(cop) 

} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 

  return(tb) 

} 

setups <- function(data_file) { 

  vars    <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitp', 'hxit', 'hpopwgt', 'nhhmem', 'grossnet') 

  subset  <- 'complete.cases(dhi, factor, hitsi, hitsu, hitp, hxit)' 

  df      <- read.LIS(data_file, labels=FALSE, vars=vars, subset=subset) 

  botline <- 0  

  topline <- 10 * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhi  <- topBottom(df$dhi, botline, topline) 

  df$edhi <- df$dhi / df$nhhmem^0.5 

  df$cdhi <- df$dhi / df$nhhmem 

  return(df) 

} 

df <- setups('gt06h') 

maxline <- 0.5 

round(100 * (sum((df$edhi < maxline * wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt) 

/ sum(df$hpopwgt)), digits = 2) 
round(100 * (sum((df$edhi < maxline * wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt * 

df$nhhmem) / sum(df$hpopwgt * df$nhhmem)), digits = 2) 
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Results 

 Households Individuals 

Relative poverty rate 23.5% 24.9% 

Question: Are there more poor households or more poor individuals? What can you infer from 

this? 

• There is a greater proportion of poor individuals than poor households. This is because 

poor households are larger on average than non-poor households. This is another reason 

why the use of the equivalence scale is important.  

 

Comments  

� The head count ratio (HCR) measures poverty incidence (i.e., the number or proportion of poor 

people), but gives every person equal weight no matter how far they fall from the poverty line.  

� Another measure, the Income Gap Ratio (IGR) measures poverty intensity or depth (how poor 

are the poor), but one poor person with an income of an amount x counts the same as two poor 

people each with an income of x/2.  That is, the IGR measures the average income gap, but not 

its distribution among the poor). 

� There are many other indicators of poverty that may be useful for different purposes. These 

include, among the most common, the whole family of Foster-Greer-Thorbecke indicators (of 

which the HCR is only one), the Sen index, the Takayama index, the Clark index, and the Thon 

index. It is important to note that a country may score better in comparison to a second country 

when using a particular index, but could score worse if another index was used instead. 
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6.  Comparing income concepts 

 

Goal 

Now that we have calculated Gini coefficients and poverty rates based on disposable income, we 

can easily apply this same code to two other income concepts: income before any taxes and 

government transfers, and income after taxes, social insurance, and universal benefit transfers (but 

before social assistance transfers). Starting from this exercise, we will also introduce some 

programming techniques which will make it easier to repeat a series of commands several times 

without having to repeat the code.  

Different income concepts - The income variable we have been working with, dhi, combines multiple 

income and expenditure flows. It is the sum of labour and capital income, private transfers, work-

related insurance transfers, universal benefits, and social assistance benefits, minus any taxes and 

social insurance contributions paid. We will now define two new concepts of income. One of them 

is income before any government redistribution. The second is income after taxes, social insurance, 

and universal benefits, but before social assistance is included.  

By calculating the Gini coefficient and the poverty rate using each of these three income concepts 

(income before government intervention, income after non-assistance government redistribution, 

and income after all government redistribution, i.e. our original disposable household income 

variable, dhi), we gain some insight into the effect of government programmes on inequality and 

poverty.  

Efficient programming techniques - This exercise also introduces some programming techniques 

that allow to loop the same code over several variables. 

Activity 

As always, begin with the program you developed for the last exercise. Modify it to create two new 

income variables. The first, mi, is the sum of factor income (factor) and private transfers (hitp). 

Because we are specifically interested in the role of government transfers, we add private transfers 

to our measure of “market income” from labor and capital.  

The second, siti, adds mi together with social insurance transfers (hitsi) and universal benefits 

(hitsu), while subtracting taxes and social contributions paid (hxit).  

The income variable we have been using up to now, disposable household income, adds together 

the variables contained in siti along with social assistance transfers (which are also contained in the 

variable hitsa).  

Make sure you apply top codes, bottom codes, and the equivalence scale to the new variables, 

producing the final variables emi, esiti, and edhi. You should apply the same topcode value of ten 

times median dhi to both of the other two variables. 

Write a loop to calculate the Gini coefficient and the poverty rate for all three income variables, 
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based on the code from the previous two exercises. Use it to fill out the table below. Make sure you 

use the same poverty line for all three income variables. That is, the poverty line should be defined 

as 50 percent of the median equivalised disposable household income, and that same poverty 

definition should be applied to the other two income variables.  

 
Before taxes and 

government transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

Gini coefficient    

Poverty rate    

Question: What has the greater impact on inequality and poverty in Guatemala: taxes/social 

insurance/universal benefits, or social assistance? 

 

Guidelines 

-  
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Program 

 

gini <- function(x, weight) { 

  ox     <- order(x) 

  x      <- x[ox] 

  weight <- weight[ox]/sum(weight) 

  p      <- cumsum(weight) 

  nu     <- cumsum(weight*x) 

  n      <- length(nu) 

  nu     <- nu/nu[n] 

  res    <- sum(nu[-1]*p[-n])-sum(nu[-n]*p[-1]) 

return(res) 

} 

wNtile <- function(var, wgt, split) { 

    x  <- var[order(var)] 

    y  <- wgt[order(var)]  

    z  <- cumsum(y) / sum(y) 

    cop  <- rep(NA,length(split)) 

    for (i in 1:length(cop)) { 

        cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

    } 

    return(cop) 

} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 

  return(tb) 

} 
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setups <- function(data_file) { 

  vars     <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitp', 'hxit', 'hpopwgt', 'nhhmem', 
'grossnet') 

  subset   <- 'complete.cases(dhi, factor, hitsi, hitsu, hitp, hxit)' 

  df       <- read.LIS(data_file, labels = FALSE, vars = vars, subset = subset)  

  botline  <- 0  

  topline  <- 10   * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhi   <- topBottom(df$dhi, botline, topline) 

  df$edhi  <- df$dhi / (df$nhhmem^0.5) 

  df$mi    <- df$factor + df$hitp 

  df$emi   <- topBottom(df$mi  , botline, topline) / (df$nhhmem^0.5) 

  df$siti  <- df$factor + df$hitp + df$hitsi + df$hitsu - df$hxit 

  df$esiti <- topBottom(df$siti, botline, topline) / (df$nhhmem^0.5) 

  return(df) 

} 

df <- setups('gt06h') 

maxline <- 0.5 

for(var in c('emi', 'esiti', 'edhi')) { 

  cat(paste("VARIABLE: ", var), sep = '\n') 

  cat(paste("Gini Coefficient -" , round(gini(df[[var]], df$hpopwgt*df$nhhmem), digits 
= 3)), sep = '\n') 

  cat(paste("Poverty Rate     -", round(100 * (sum((df[[var]] < maxline * 
wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt * df$nhhmem) / 
sum(df$hpopwgt * df$nhhmem)), digits = 2)), sep = '\n') 

 cat(" ", sep = '\n') 

} 
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Results 

 
Before taxes and 

government transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

Gini coefficient 0.514 0.502 0.489 

Poverty rate 27.7% 27% 24.9% 

Question: What has the greater impact on inequality and poverty in Guatemala: taxes/social 

insurance/universal benefits, or social assistance? 

• For both inequality and poverty, assistance benefits play a larger role than social insurance and 

universal benefits.  

 

Comments 

� When comparing incomes before and after taxes and transfers, take care in interpreting the 

meaning of the pre-tax and transfer figure. It is tempting to interpret this number as a 

representation of the income distribution that would exist in the absence of government 

programs. However, since outcomes in the private sector are conditioned by the presence or 

absence of government programs, this is not generally a reasonable inference. 
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7.  Comparing multiple countries  

 

Goal 

Now that we have written code to compute all of our statistics of interest, it is time to calculate 

these quantities for multiple countries. Building up on the previous exercise, we will introduce 

different programming techniques that break the code into logic sub-routines and generalise our 

program to loop through multiple datasets.  

Adding more countries – Before adding a new country/year to an analysis, it is important to check 

that the dataset in question has all information necessary for the analysis you are performing. In 

this case, one should carefully check that the income sub-components variables used in the 

previous exercise are filled for all the new datasets to be introduced (and if not, whether the analysis 

can be slightly modified to take into account a different situation). 

Efficient programming techniques – In the previous exercise we have introduced some programming 

techniques that allowed to loop the same code over several variables. In this exercise, we will 

introduce some other techniques that allow to organise the code in an efficient way and easily loop 

over both variables and datasets.  

 

  

Activity 

Take the code from the previous exercise and modify it so that it loops through six datasets:  

Guatemala 2006 (gt06), United States 2004 (us04), Denmark 2004 (dk04), Poland 2004 (pl04), 

Hungary 2005 (hu05) and Israel 2005 (il05). 

The code that creates the income variables can be placed in a subroutine that is called from the 

main loop, as can the code that applies the equivalence scale and the top and bottom codes.  

One of these countries is a net income dataset. This means that the tax contribution variable hxit 

is missing for all cases. Because our current program drops cases that are missing any income 

subcomponent variable, all the cases will be dropped for net income datasets. Using the grossnet 

variable, you can modify your code to prevent this from happening.  

 

Use your results to fill in the following tables: 
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Gini Coefficient  

Dataset 

Before taxes and 

government 

transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

GT06    

US04    

DK04    

PL04    

HU05    

IL05    

 

Poverty Rate 

Dataset 

Before taxes and 

government 

transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

GT06    

US04    

DK04    

PL04    

HU05    

IL05    

Keep in mind that even if all cells can technically be constructed, the result may not necessarily be 

comparable conceptually! Think carefully about whether the dataset you are looking at 

contains the necessary information to calculate the quantity in each column.  

 Question: In what cells does the figure you produced not match the income concept described in 

the column header? 

 Question: Comparing Guatemala and Poland, which country has higher inequality before taxes 

and transfers? After? 

Question: Which country has the highest poverty rate before taxes and transfers? After?  

Question: In which country do government programmes do the most to reduce inequality and 

poverty, in percentage terms? In which country do they do the least? 

Question: In which countries do social assistance benefits do more to reduce poverty than social 

insurance plus universal benefits and taxes? 
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Guidelines 

� Functions 

The R language lends itself to functional programming, in which programs are constructed 

around the inputs and outputs to functions. When a chunk of code needs to be executed 

repeatedly for different data, it can be useful to put that code in a function, and then have 

the main program call the function. We have already used functions in the calculation of the 

Gini coefficient. Since this exercise requires us to perform identical recodings on multiple 

data sets, we can create a function to do the recoding. The function will look like this: 

setups <- function(data_file) { 

        <recoding commands from the previous program go here> 

  return(df) 

} 

This function takes a data frame as it argument, performs some recoding on that data 

frame, and then returns the data frame. So, if you have loaded a dataset into memory, you 

can then recode it.  

� The variable grossnet reports whether the incomes in a dataset are gross income, before taxes, 

or whether the only report post-tax values. Within a single dataset, all cases will have the same 

value for this variable. In a purely net income dataset, grossnet will be between 200 and 299. 

For more information about whether the LIS datasets report gross or net values, go to Our Data 

→ Documentation (under the LIS DATABASE heading) → List of Dataset Information. 

� You can use grossnet in your loop in order to tell R to subset the data differently for net income 

datasets. For instance, you could pass the following string to read.LIS in the “subset” argument: 

"complete.cases(dhi,factor,hitsi,hitsu,hitp) & (complete.cases(hxit) | grossnet == 200" 

This will drop cases that are missing tax data (hxit) only in gross income data sets, and not in net income 

datasets (where this variable is always missing). 

� You can use the ifelse command with grossnet to help in coding your income variables. The 

ifelse command is a vectorized form of if. It takes three vectors as arguments. It checks whether 

each element of the first vector is TRUE, and then returns either the element from the second 

vector (if it is TRUE) or the element from the second vector (if it is FALSE). For instance: 

ifelse(c(TRUE,FALSE,TRUE), c(1,1,1), c(2,2,2))) 

would return the vector c(1,2,1). In your code, try the following to produce your income variable: 

df$siti  <- ifelse(df$grossnet %in% 100:199, 

                   df$factor + df$hitp + df$hitsi + df$hitsu - df$hxit, 

                   df$factor + df$hitp + df$hitsi + df$hitsu) 
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� Looping through datasets 

You can use a loop to iterate over datasets, just as you have used loops elsewhere in your code: 

 for(ccyy in datasets) { 

   df <-setups(ccyy) 

<other code to produce output> 

 } 
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Program 

gini <- function(x,weight) { 

  ox     <- order(x) 

  x      <- x[ox] 

  weight <- weight[ox]/sum(weight) 

  p      <- cumsum(weight) 

  nu     <- cumsum(weight*x) 

  n      <- length(nu) 

  nu     <- nu/nu[n] 

  res    <- sum(nu[-1]*p[-n])-sum(nu[-n]*p[-1]) 

return(res) 

} 

wNtile <- function(var, wgt, split) { 

    x  <- var[order(var)] 

    y  <- wgt[order(var)]  

    z  <- cumsum(y) / sum(y) 

    cop  <- rep(NA,length(split)) 

    for (i in 1:length(cop)) { 

        cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

    } 

    return(cop) 

} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 

  return(tb) 

} 

setups <- function(data_file) { 

  vars     <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitsa', 'hitp', 'hxit', 'hpopwgt', 
'nhhmem', 'grossnet') 

  subset <- 'complete.cases(dhi,factor,hitsi,hitsu,hitp) & (complete.cases(hxit) | 
grossnet == 200)'  

  df       <- read.LIS(data_file, labels = FALSE, vars = vars, subset = subset)  

  botline  <- 0  

  topline  <- 10   * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhi   <- topBottom(df$dhi, botline, topline) 

  df$edhi  <- df$dhi / (df$nhhmem^0.5) 

  df$mi    <- df$factor + df$hitp 

  df$emi   <- topBottom(df$mi  , botline, topline) / (df$nhhmem^0.5) 
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  df$siti  <- ifelse(df$grossnet %in% 100:199,  df$factor + df$hitp + df$hitsi + 
df$hitsu - df$hxit, df$factor + df$hitp + df$hitsi + df$hitsu) 

  df$esiti <- topBottom(df$siti, botline, topline) / (df$nhhmem^0.5) 

  return(df) 

} 

 

  datasets <- c('gt06', 'us04', 'dk04', 'pl04', 'hu05', 'il05') 

  maxline <- 0.5 

  for (ccyy in datasets) { 

    df <- setups(paste(ccyy,'h',sep='')) 

    for(var in c('emi', 'esiti', 'edhi')) { 

      cat(paste("VARIABLE: ", var), sep = '\n') 

      cat(paste("Gini Coefficient -" , round(gini(df[[var]], df$hpopwgt*df$nhhmem), 
digits = 3)), sep = '\n') 

      cat(paste("Poverty Rate     -", round(100 * (sum((df[[var]] < maxline * 
wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt * df$nhhmem) / 
sum(df$hpopwgt * df$nhhmem)), digits = 2)), sep = '\n') 

      cat(" ", sep = '\n') 

    } 

  } 
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Results 

Gini Coefficient  

Dataset 

Before taxes and 

government 

transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

GT06 0.514 0.502 0.489 

US04 0.487 0.389 0.364 

DK04 0.447 0.264 0.228 

PL04 0.531 0.336 0.315 

HU05 0.535* 0.316 0.289 

IL05 0.518 0.394 0.369 

*Calculation based on post-tax income 

Poverty Rate 

Dataset 

Before taxes and 

government 

transfers 

After taxes, social 

insurance, and 

universal benefits 

After taxes and all 

transfers 

GT06 27.7 27 24.9 

US04 28 21.3 17.4 

DK04 29.2 13.4 5.6 

PL04 42 14.7 10.8 

HU05 44.1* 12.2 7.4 

IL05 32.8 22.5 19.4 

*Calculation based on post-tax income 

Question: In what cells does the figure you produced not match the income concept described in 

the column header? 

• Because Hungary 2005 is a net income dataset, the Gini before taxes and transfers 

cannot be included. While the example program below does produce a result for Hungary, 

it is not actually comparable to the other two countries because it is post-tax. That cell 

should therefore be left blank. 

Question: Comparing Guatemala and Poland, which country has higher inequality before taxes 

and transfers? After? 

• Poland has higher inequality before taxes and transfers are accounted for. After taxes 

and transfers, however, inequality is substantially higher in the Guatemala.  

Question: Which country has the highest poverty rate before taxes and transfers? After?  

• Poland has the highest poverty rate before taxes and transfers, but Guatemala has the 
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highest poverty rate after taxes and transfers.  

Question: In which country do government programmes do the most to reduce inequality and 

poverty, in percentage terms? In which country do they do the least? 

• Government programmes have the largest impact on in Denmark, where they reduce the 

Gini coefficient by 46 percent, and poverty by 80 percent.  

Question: In which countries do social assistance benefits do more to reduce poverty than social 

insurance plus universal benefits and taxes? 

• In Guatemala, social assistance reduces poverty more than social insurance plus universal 

benefits and taxes. 

 

Comments 

� The datasets in these exercises were chosen because they allow social assistance to be 

separated from other kinds of government transfers. In many datasets, unfortunately, this 

separation is not possible due to the limitations of the original data. In such cases, the total 

amount of transfer income will be contained in a higher-level variable such as hits, and lower 

level variables such as hitsi and hitsu will be unfilled. You can consult the « Variable Availability 

Matrix » document to determine which variables are available in each dataset. 

� In datasets containing gross incomes, the grossnet variable can take values of 100, 110, or 

120. In datasets containing only net income, grossnet will always take a value of 200. Note, 

however, that a few datasets have grossnet codes of 300, 310, or 320, because they contain a 

mixture of gross and net incomes. See the “Variable Definition List” document for more 

information. 
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8. Producing compact and concise output 

Goal 

The program we have developed produces results for two indicators (poverty and inequality), three 

definitions of income, and six countries. This results in a total of 36 values of interest in the resulting 

log file. We could copy these values into a spreadsheet by hand, but this would be very time-

consuming and would increase the likelihood of introducing errors by accidentally copying the 

wrong number. In this exercise, we will modify the program to create compact output that can be 

transferred into a spreadsheet with only one cut-and-paste.  

The final output will be a set of comma-separated values, in which each country is on a separate 

row and each indicator is on a separate column. 

Activity 

To produce easy-to-use output, we will modify the program as follows: 

• Create a matrix to store only the results we need from the program, and label its dimensions 

appropriately. 

• Replace the code that prints out results with code that stores those results in the matrix. 

• Print out the matrix at the very end of the program, in Comma Separated Values format. 

The result will be tables like the ones shown below. The easiest way to do this is to copy and paste 

the comma-separated block of results into a spreadsheet.  

Guidelines 

One advantage of R is that it does not limit the number of separate data objects that can be in 

memory at one time. This means that we can have a separate matrix to hold our results, while 

also keeping a LIS data set open for processing. To set up the matrix, put this code before the 

program's main loop: 

result           <- matrix(NA,length(datasets),6) 
rownames(result) <- datasets 
colnames(result) <- c('gini_mi','gini_siti','gini_dhi','pov_mi','pov_siti','pov_dhi') 

This creates a 6x6 matrix filled with the NA (missing) value, which we will then fill. Inside your 

main loop, insert the Gini and poverty rate to the appropriate cells. 
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result[match(ccyy,datasets), match(var, c('emi','esiti','edhi'))] <- “your-gini” 

result[match(ccyy,datasets), 3 + match(var, c('emi','esit','edhi'))] <- “your-pov” 

By using the match command, we can ensure that each number is inserted into the correct column 

and row. Then at the very end of the program, after the main loop, we insert: 

write.csv(result) 

This will create output like that shown below in the section Result. 
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Program 

gini <- function(x,weight) { 

  ox     <- order(x) 

  x      <- x[ox] 

  weight <- weight[ox]/sum(weight) 

  p      <- cumsum(weight) 

  nu     <- cumsum(weight*x) 

  n      <- length(nu) 

  nu     <- nu/nu[n] 

  res    <- sum(nu[-1]*p[-n])-sum(nu[-n]*p[-1]) 

return(res) 

} 

wNtile <- function(var, wgt, split) { 

    x  <- var[order(var)] 

    y  <- wgt[order(var)]  

    z  <- cumsum(y) / sum(y) 

    cop  <- rep(NA,length(split)) 

    for (i in 1:length(cop)) { 

        cop[i] <- x[Find(function(h) z[h] > split[i], seq_along(z))] 

    } 

    return(cop) 

} 

topBottom <- function(var, botline, topline) { 

  tb               <- ifelse(var < botline, botline, var) 

  tb[tb > topline] <- topline 

  return(tb) 

} 

setups <- function(data_file) { 

  vars     <- c('dhi', 'factor', 'hitsi', 'hitsu', 'hitsa', 'hitp', 'hxit', 'hpopwgt', 'nhhmem', 
'grossnet') 

  subset <- 'complete.cases(dhi,factor,hitsi,hitsu,hitp) & (complete.cases(hxit) | grossnet == 
200)'  

  df       <- read.LIS(data_file, labels = FALSE, vars = vars, subset = subset)  

  botline  <- 0  

  topline  <- 10   * wNtile(df$dhi, df$hpopwgt, 0.5) 

  df$dhi   <- topBottom(df$dhi, botline, topline) 

  df$edhi  <- df$dhi / (df$nhhmem^0.5) 

  df$mi    <- df$factor + df$hitp 

  df$emi   <- topBottom(df$mi  , botline, topline) / (df$nhhmem^0.5) 

  df$siti  <- ifelse(df$grossnet %in% 100:199,  df$factor + df$hitp + df$hitsi + df$hitsu - 
df$hxit, df$factor + df$hitp + df$hitsi + df$hitsu) 

  df$esiti <- topBottom(df$siti, botline, topline) / (df$nhhmem^0.5) 

  return(df) 

} 
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datasets <- c('gt06', 'us04', 'dk04', 'pl04', 'hu05', 'il05') 

maxline <- 0.5 

result           <-  matrix(NA,length(datasets),6) 

rownames(result) <- datasets 

colnames(result) <- colnames(result) <-
c('gini_mi','gini_siti','gini_dhi','pov_mi','pov_siti','pov_dhi')  

 

for (ccyy in datasets) { 

    df <- setups(paste(ccyy,'h',sep='')) 

    for(var in c('emi', 'esiti', 'edhi')) { 

      result[match(ccyy, datasets),     match(var, c('emi', 'esiti', 'edhi'))] <- 
round(gini(df[[var]], df$hpopwgt*df$nhhmem), digits = 3) 

      result[match(ccyy, datasets), 3 + match(var, c('emi', 'esiti', 'edhi'))] <- round(100 * 
(sum((df[[var]] < maxline * wNtile(df$edhi, df$hpopwgt * df$nhhmem, 0.5)) * df$hpopwgt * 
df$nhhmem) / sum(df$hpopwgt * df$nhhmem)), digits = 2) 

   } 

} 

print(write.csv(result)) 
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Results 

 

If you have modified the program correctly, you should see a block of text like this at the end of 

your log file: 

 

"","gini_mi","gini_siti","gini_dhi","pov_mi","pov_siti","pov_dhi" 

"gt06",0.514,0.502,0.489,27.7,27,24.9 

"us04",0.487,0.389,0.364,28,21.3,17.4 

"dk04",0.447,0.264,0.228,29.2,13.4,5.6 

"pl04",0.531,0.336,0.315,42,14.7,10.8 

"hu05",0.535,0.316,0.289,44.1,12.2,7.4 

"il05",0.518,0.394,0.369,32.8,22.5,19.4 

 

If you copy and paste this into a spreadsheet, most spreadsheet programs should recognize this 

as a set of comma-separated values and parse it automatically. You can also copy the text into a 

text file, save it with the .csv extension, and open it with your spreadsheet program. 
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